Check for
Updates

OpeNTF: A Benchmark Library for Neural Team Formation

Arman Dashti
University of Windsor, Canada
vaghehd@uwindsor.ca

Dhwani Patel
University of Windsor, Canada
patel891@uwindsor.ca

ABSTRACT

We contribute OpeNTF, an open-source python-based benchmark
library to support neural team formation research. Team forma-
tion falls under social information retrieval (Social IR), where the
right group of experts should be retrieved to solve a task, which is
intractable due to the vast pool of feasible candidates with diverse
skills. Even though neural networks could successfully address
efficiency while maintaining efficacy, they lack standard implemen-
tation and experimental details, which calls for excessive efforts
in repeating or reproducing the results in new domains. OpeNTF
provides a standard and reproducible platform for neural team for-
mation. It incorporates a host of canonical neural models along with
three large-scale training datasets from varying domains. Lever-
aging an object-oriented structure, OpeNTF readily accommodates
the addition of new neural models and training datasets. The first
of its kind in neural team formation, OpeNTF also offers negative
sampling heuristics that can be seamlessly integrated during model
training to boost efficiency and to improve the effectiveness of
inference.

CCS CONCEPTS

+ Information systems — Social recommendation; Recom-
mender systems; « Computing methodologies — Neural net-
works.

KEYWORDS

neural team formation, benchmark library, negative sampling

ACM Reference Format:

Arman Dashti, Karan Saxena, Dhwani Patel, and Hossein Fani. 2022. OpeNTF:

A Benchmark Library for Neural Team Formation. In Proceedings of the 31st
ACM International Conference on Information and Knowledge Management
(CIKM °22), October 17-21, 2022, Atlanta, GA, USA. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3511808.3557526

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9236-5/22/10...$15.00
https://doi.org/10.1145/3511808.3557526

3913

Karan Saxena
University of Windsor, Canada
saxena7@uwindsor.ca

Hossein Fani
University of Windsor, Canada
hfani@uwindsor.ca

1 INTRODUCTION

Collaborative team formation aims at forming teams of experts
whose combined skills, applied in coordinated ways, can accom-
plish difficult tasks such as a research project on ‘machine learning’
whose success can be measured by publications, or the next block-
buster ‘sci-fi’ movie with a touch of ‘drama’. Team formation can
be seen as social information retrieval (Social IR) where the right
group of experts are required to accomplish the task at hand [9, 10].
Not unexpectedly, a worldwide network of experts to draw upon,
each with their own specific aptitudes, interests, and skills, along
with the vast space of possible combinations, can overwhelm the
scalability of any algorithmic (rule-based) approach to team for-
mation problem; be it multi-objective optimization in Operation
Research [4-6] or subgraph optimization in collaborative social
network analysis [7, 11, 13, 25]. To bring efficiency while main-
taining efficacy, statistical machine learning approaches have been
proposed to learn relationships of experts and skills in the context
of teams through an iterative and online learning procedure on all
past instances of successful teams [20, 21, 24].

Although there has been an increase in team formation research [1
3, 13], each comes with a domain-specific method and a dataset.
Researchers have to spend a substantial amount of time to pre-
process the data into a version that could be readily fed into the
algorithm of choice. Also, proposed methods are case-specific with
no standard implementation and are incapable of accommodating
different use-cases, let alone the codebases and details are scarcely
publicly available. Specifically, existing systems like the recent
PyTFL [22], 1) lack efficient preprocessing of large-scale datasets,
2) cannot be easily customized or extended to new methods, and 3)
are not tailored for experiments on new datasets.

In this paper, we contribute OpeNTF, an open-source, extensi-
ble, scalable, and standard benchmark library, to support 1) neural
methods in team formation research, 2) that can be trained on large-
scale datasets from a variety of domains, and 3) evaluated fairly
using information retrieval and classification metrics. For the ease
of extensibility, OpeNTF defines an abstract class for teams that can
be realized through inheritance, be it a team of researchers in a
scientific project, a team of cast and crews in a movie, or a team
of inventors in a patent. OpeNTF also defines an abstract class for
neural team formation models, built upon pytorch [17], that can
easily accommodate the addition of new neural models through in-
heritance. For scalability, OpeNTF employs parallel execution at the
data preprocessing step, and gpu-acceleration for model training,
validation, and test which is the standard practice in machine learn-
ing research yet overlooked in the task of neural team formation to
date. For a fair benchmark, OpeNTF provides a one-click pipeline that

https://orcid.org/0000-0001-9022-5403
https://orcid.org/0000-0002-9371-4664
https://orcid.org/0000-0002-1767-6563
https://orcid.org/0000-0002-6033-6564
https://doi.org/10.1145/3511808.3557526
https://doi.org/10.1145/3511808.3557526
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511808.3557526&domain=pdf&date_stamp=2022-10-17

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

#./src/main.py
def create_evaluation_splits(n_sample, n_folds, ...): ...
def run(data_list, domain_list, filter, model_list, output, ...):
datasets = {}
models = {}
if 'dblp' in domain: datasets['dblp'] = Publication
#other datasets
if 'fon' in model: models['fnn'] = Fnn()
#other models
for (d_name, d_cls), \
(m_name, m_obj) in product(datasets.items(), \
models.items()):

vecs, ... = d_cls.generate_sparse_vectors(datapath, ...)
splits = create_evaluation_splits(vecs['id'].shapel[0], ...)
if m_name.find('_emb') > 0:
t2v = Team2Vec(vecs, 'skill', ...)
fé&.train(embisetting[’d'], emb_setting['w'], ...)
vecs['skill'] = t2v.dv()
m_obj.run(splits, vecs, ...)

Figure 1: The entry point to OpeNTF’s pipeline.

orchestrates the standard flow of machine learning benchmark with
no human in the loop. The pipeline accepts a team formation model
and brings it through the cross-fold train-validation stage followed
by the test and evaluation on an unseen test set, be it a multilayer
feed-forward non-Bayesian model or a variational Bayesian model.
More notably, OpeNTF features three negative sampling heuristics
that can be plugged in to increase the efficiency of neural models
during training while improving inference effectiveness, the first
of its kind in the neural team formation research.
Contribution. Like similar efforts such as OpenMatch [15] that of-
fers an extensible platform for the design, comparison and sharing
of neural information retrieval models, OpeNTF offers a benchmark
platform but for neural team formation. It targets the information
retrieval and recommender system research communities to pro-
pose new team formation solutions and evaluate their effectiveness
in a reproducible benchmark platform, eschewing the arduous labor
in baseline and evaluation pipeline reimplementation. Also, having
regard to the unified comparative results, organizations and prac-
titioners can compare different models and readily pick the most
suitable one for their application to form collaborative teams of
experts whose success is almost surely guaranteed.

In contrast to publicly available systems that faces shortcomings
especially when scalability, reproducibility, and extensibility are
of prime concerns, OpeNTF (1) employs parallel preprocessing of
large-scale datasets into a sparse or dense vector representation
of skills and experts in teams; (2) embodies built-in neural models
that are flexible to customization; (3) smoothly incorporates a new
neural model; (4) implements the standard pipeline for training,
testing, and evaluating predicted experts for the required input
skills for teams in a host of information retrieval and classification
metrics, and (5) efficiently generates the statistical characteristics
of datasets from different domains that allows to study whether
the models’ performances are robust on datasets with a diverse
statistical distribution of skills and/or experts in teams. To top
it all off, (6) OpeNTF incorporates virtually unsuccessful teams in
the absence of explicit unsuccessful teams (e.g., rejected papers)
using negative sampling heuristics including uniform, unigram,
and smoothed unigram in training minibatches, unigram_b, that
can be seamlessly integrated during neural model training to boost
efficiency and to improve the effectiveness of inference.

3914

Arman Dashti, Karan Saxena, Dhwani Patel, and Hossein Fani

#./src/cmn/team.py
class Team(object):
def __init__(self, id, members, skills, ...):
self.id = id
self.members = members
self.skills = skills

def read_data(teams, output, filter, settings): ...

def generate_sparse_vectors(cls, datapath, ...):
try: #lazy creation with memoization
print(f"Loading sparse matrices from {pkl} ...")
with open(pkl, 'rb') as infile:
vecs pickle.load(infile)
return vecs, ...
except FileNotFoundError as e:
print("File not found! Generating ...
if settings['parallel']: #parallel
with multiprocessing.Pool() as p:

[}

func = partial(Team.bucketing, ...)
data = p.map(func, subteams)
else: #sequential
data = Team.bucketing(...)
data = scipy.sparse.vstack(data, '1il')
vecs = {'skill': datal:, ...], 'member':datal:, ..
with open(pkl, 'wb') as outfile:
pickle.dump(vecs, outfile)
return vecs, ...

I3

except Exception as e:
raise e
get_one_hot(self, ...): ...
remove_outliers(teams, settings): ...
get_stats(cls, teamsvecs, output, plot=True):
plot_stats(stats, output): ...

def
def
def
def

Figure 2: Team class; an abstract definition for teams.

The codebase along with the installation instructions and case
studies on dblp.v12, imdb, and uspt on 16+1 neural baselines can
be obtained under cc-by-nc-sa-4.0 license at:
https://github.com/fani-lab/opentf.

2 NEURAL TEAM FORMATION

Given a set of skills S and a set of experts &, a team can be abstractly
defined as a tuple (s, e) including the non-empty subsets of skills
s € S and experts e C &. Examples of successful teams include pub-
lished research papers consisting of authors as the experts and fields
of study (keywords) as the skills, blockbuster movies consisting of
its cast and crew such as actors and directors as the experts and the
genres as the skills, or issued patents consisting of its inventors as
the experts and categories (classes) as the skills. Nonetheless, what
constitutes experts and skills of a team along with its success or
failure can be easily overridden in OpeNTF. For instance, success
can be redefined based on number of citations for a research paper,
critical acclaims for a movie, and commercialization for a patent.

In neural team formation, given an input subset of skills s we
aim at identifying an optimal subset of experts e such that their col-
laboration is almost surely successful, having regard to the training
instances of all previous successful teams. More concretely, a neural
model is an estimator for a mapping function f from a subset of
skills to a subset of experts, i.e., f(s)= e. We refer readers to [21, 22]
for further in-depth formal definitions of neural models.

3 SYSTEM OVERVIEW

OpeNTF is designed in a modular way with reproducibility, ex-
tensibility, and scalability in mind. It includes a single one-click
pipeline that engages three primary components: 1) teams sparse
matrix representation, 2) neural model training, and 3) perfor-
mance evaluation. Figure 1 shows the entry point to the pipeline

https://github.com/fani-lab/opentf

OpeNTF: A Benchmark Library for Neural Team Formation

10° -
7
/s
~ 102 7
g /'/
O qp1 1
9] 3
K R4
7
v 10° o
= s
o —— loading raw data
10 parallel prep.
/—-- sequential prep.
102

103 10 10°
#teams (papers in dblp.v12)
Figure 3: Data preprocessing speedup by 2. 5x using parallel
processing on xeon 3.4ghz with 12 cores and 64gb memory.

X .
dblp.vi2 105 ghich)
105 wn X
g S X
o 2
S 2 10°
% 10]
2 £
++ +*
10! 101
101 103 10° 10t
#teams #teams

Figure 4: Efficient calculation of the distribution of experts
in teams using teams sparse matrix.

(./src/main.py). As seen, the pipeline creates a list of dataset
classes (e.g., Publication for dblp) and a list of neural models
(e.g., Fnn() for the feed-forward non-Bayesian model) and exe-
cutes a benchmark on all neural models over all datasets by call-
ing overridden functions via polymorphism. Class definitions for
datasets, inherited from an abstract class Team, accept a path to
the data and transforms the raw content into a sparse matrix
(generate_sparse_vectors()) in which teams’ skills and expert
members are represented in sparse occurrence vectors (one-hot
encoded). Teams’ skills and members can be also represented in
dense vectors through OpeNTF’s adoption of paragraph vector [14]
(Team2Vec). Preprocessed data, as either sparse or dense matrix, is
randomly split into a train-validation set and a test set. The train-
validation set is further split into folds. Next, a neural model is
trained and validated on each fold followed by the evaluation on
the test set using information retrieval and classification metrics
(runQ)). In the following, we detail each component.

3.1 Teams Sparse Matrix Representation

OpeNTF transforms training sets from different domains into a uni-
form data structure that neural models can easily consume. As per
Figure 2, it defines an abstract class Team that builds the sparse
vector representation of a team instance having regard to two main
properties of a team: skills and expert members, alleviating the
discrepancies in the underlying datasets from different domains.
Each instance of a team is transformed into an occurrence vector
of skills and members independently in parallel(get_one_hot()).
OpeNTF uses bucketing to trade-off the performance gain by parallel
stacking of vectors and multiprocessing overhead. Figure 3 shows
the speedup when using parallel preprocessing for dblp.v12. From
the figure, while elapsed time for loading the raw data remains
relatively low for an increasing number of teams, it linearly grows
for creating the sparse vector representation which is reduced via
parallel processes.

3915

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Table 1: Statistics and their total calculation time.
statistics

distributions

#teams #teams per each skill
#experts #teams per each expert
#skills #skills having 1 team, 2 teams ...

#teams w/ one skill #experts having 1 team, 2 teams ...
#teams having 1 skill, 2 skills ...

#teams having 1 expert, 2 experts ...

#teams w/ one expert
average #skills per team

average #experts per team #teams time (seconds)

average #sKkills per expert uspt 7,068,508 157.1706

average #teams per expert | dblp.v12 4,877,383 177.8351
imdb 507,034 28.3453

Teams sparse matrix representation further facilitates efficient
analysis of statistical characteristics of the datasets by calculating
the distributions on the matrix using linear algebra, as opposed to
enumerating raw data, followed by visualization. Table 1 shows that
our library efficiently calculates point statistics and distributions
with visualization. Knowing the underlying statistics of the training
datasets is key to the choice of the neural model, as highlighted
in [21]. For example, Figure 4 depicts the distribution of teams
over experts for dblp.v12 and imdb. Both datasets suffer from long
tail distributions; a few experts have participated in many teams,
whereas the majority have participated sparingly.

3.2 Neural Model Training

OpeNTF provides an abstraction on neural team formation models
(Ntf), inherited from pytorch’s nn.Module. From Figure 5, Ntf pro-
vides a single interface for major steps of neural model benchmark
including training, test, and evaluation. Researchers and practition-
ers can instantiate the built-in neural models or seamlessly plug in
custom ones, being liberated from rebuilding the benchmark stages.

Currently, OpeNTF includes two reference neural architectures:
i) feed-forward neural network (Fnn) and ii) the state-of-the-art
variational Bayesian neural network (Bnn) in neural team forma-
tion [21]. The variational Bayesian model inherits from Fnn and
reuses the implementation of the test stage and the negative sam-
pling heuristics, e.g., ns_uniform(), while overriding the learning
stage. Both neural networks are designed to accept sparse or dense
vector representations of skills in the input layer and encode them
into subsets of experts through one or several hidden layers of dif-
ferent sizes. The neural model’s architecture and hyperparameters
can be dynamically set (. /src/param.py) to perform a wide range
of ablation studies programmatically. For the minimum level of
comparison baseline, OpeNTF also includes a random model (Rnd)
that blindly assigns a random subset of experts to the input subset
of skills. Neural models benefit from two additional features, as
explained hereafter.

3.2.1 Dense Vector Representation. Following Rad et al. [21],
OpeNTF incorporates learning dense vector representations for the
input subsets of skills and output subsets of experts. Inspired by
paragraph vectors of Le and Mikolov [14], we consider a team as
a document and its skills and expert members as the document’s
words. We developed Team2Vec class (. /src/mdl/team2vec. py) to
learn dense vector representations of subsets of skills and experts
in the same or disjoint embedding spaces (embtypes= ‘skill’,
‘member’, ‘joint’). We employ the distributed memory model to
generate the real-valued embeddings using gensim[23]. Figure 1

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

nn.Module
+forward() Ntf
(./src/mdl/ntf.py)
/ +device
+run()
Fnn +learn()
+test()
(/src/mdl/fnn.py) sevaluate()
el +plot_roc()

+hidden_layers
+fc2

Rnd
(/src/mdl/rnd.py)

N

learn()
forward()
test()

forward()
test()

+cross_entropy()
+ns_uniform()
+ns_unigram()
+ns_unigram_b()

—
| e

Bnn
(./src/mdl/bnn.py)

+h1: BayesianLayer
+h2: BayesianLayer
+output: BayesianLayer

BayesianLayer
(./src/mdl/bnn.py)

learn()
forward()

+mu
+rho

+log_prior()
+log_post()
+sample_elbo()

forward()

Figure 5: Inheritance hierarchy of neural models.

shows that neural models are able to easily employ dense vectors
for skill in the input and expert members in the output layers.

3.22 Negative Sampling Heuristics. Leveraging negative sam-
ples conveys complementary signals to a neural model and im-
proves accuracy, best shown in social network analysis, language
modeling, and recommender systems, [12, 16, 19, 26]. However,
most real-world training datasets in the team formation domain do
not have unsuccessful teams explicitly (e.g., collection of rejected
papers.) In the absence of unsuccessful training samples, OpeNTF
incorporates three negative sampling heuristics based on the closed-
world assumption where no currently known successful subset of
experts for the input skills is assumed unsuccessful:

e uniform, where subsets of experts are randomly chosen from the
uniform distribution over all subsets of experts as unsuccessful
teams.

unigram, where subsets of experts are chosen regarding their
frequency in the training set. Intuitively, teams of experts that
have collaborated more often will be given higher probabilities
and chosen more frequently as negative samples to dampen the
effect of popularity bias.

unigram_b, where we employed the Laplace smoothing when
computing the unigram distribution of the experts but in each
training minibatch.

In sum, OpeNTF is ready to benchmark 16+1 baselines:

{Fnn, Bnn} x {sparse, dense} x

{none, uniform, unigram, unigram_b} + random.

3.3 Performance Evaluation

The evaluation methodology of OpeNTF is based on n-fold cross-
validation at the model training-validation stage followed by a test
stage. The set of teams (technically, the rowids of the teams sparse
matrix) is randomly split into a test set (15% by default) and a train-
validation set. The train-validation set is further split into n-folds
for model training and validation that results in one trained model

3916

Arman Dashti, Karan Saxena, Dhwani Patel, and Hossein Fani

per fold. The train-validation folds and test set are generated by
the OpeNTF’s pipeline and equally fed into all baseline models for a
fair evaluation comparison. Given a team from the test set, OpeNTF
compares the ranked list of a predicted subset of experts by the
model of each fold with the observed subset of experts and reports
the performance of the trained model on each fold as well as the
average in all folds. It reports the information retrieval metrics
including normalized discounted cumulative gain (ndcg) and mean
average precision (map) at top-k as well as classification metrics
including precision and recall at top-k and area under the re-
ceiver operating characteristic (rocauc) using pytrec_eval [8]
and scikit-learn [18] libraries.

In order to evaluate the efficiency of neural models at the training
phase (i.e., whether the model converges sooner to the minimum
loss) versus its inference efficacy, OpeNTF also evaluates the models’
effectiveness on the test set at each training epoch and report the
metrics within the increasing number of epochs. The complete
results of neural baselines on dblp.v12 and imdb are accessible at
OpeNTF’s codebase.

4 QUICK START!

OpeNTF can be obtained by:
git clone https://github.com/fani-lab/opentf.git

It accepts paths to raw data, domain names, and neural model
names and benchmarks all the models on all the datasets based on
hyperparameters in . /src/param. py without human in the loop
until final delivery of trained models and evaluation metrics in the
output path:

-data DATA_LIST [DATA_LIST ...]
-domain DOMAIN_LIST [DOMAIN_LIST ...] #domains of datasets
-model MODEL_LIST [MODEL_LIST ...] #neural model names
-filter {0, 1} f#remove outliers? (@ by default)

-output OUTPUT #output folder ('./../output' by default)

#paths to raw datasets

An example run of our library is:

cd ./opentf/src
python -u main.py -data toy.dblp.v12.json \
toy.title.basics.tsv \
toy.patent.tsv
-domain dblp imdb uspt
-model random fnn fnn_emb bnn bnn_emb

5 CONCLUDING REMARKS

We presented OpeNTF, the first open-source python-based bench-
mark library for neural team formation research. OpeNTF features
i) end-to-end reproducible pipeline with standard experimental
methodology, ii) abstractions for training datasets and neural mod-
els for ease of extensibility along with reference implementation
of the state-of-the-art neural models, iii) scalable preprocessing
and efficient statistical analysis of large-scale datasets, and notably
iv) three negative sampling heuristics to boost neural models’ ef-
ficiency and efficacy at training and testing stages, respectively.
Currently, OpeNTF is being extended to incorporate human and
non-human factors in team formation, such as scheduling prefer-
ences (temporal team formation), social aspects (‘social fit” for a
team), diversity (not only varying skills, but different institutions,
countries, and education), and fairness in team formation [3].

Ihttps://github.com/fani-1lab/opentf/blob/main/quickstart.ipynb

https://github.com/fani-lab/opentf/blob/main/quickstart.ipynb

OpeNTF: A Benchmark Library for Neural Team Formation CIKM 22, October 17-21, 2022, Atlanta, GA, USA

REFERENCES Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR Workshop and Con-

[1] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and ference Proceedings, Vol. 32). JMLR.org, 1188-1196. http:/proceedings.mlr.press/
Stefano Leonardi. 2012. Online team formation in social networks. In Proceedings v32/ 1e14.html . . . X

of the 21st World Wide Web Conference 2012, WWW 2012, Lyon, France, April [15] Zhenghao Liu, Kaitao Zhang, Chenyan Xiong, Zhiyuan Liu, and Maosong Sun.

16-20, 2012, Alain Mille, Fabien Gandon, Jacques Misselis, Michael Rabinovich, 2021. OpenMatch: An Open Source Library for Neu-IR Research. In SIGIR "21:

and Steffen Staab (Eds.). ACM, 839-848. https://doi.org/10.1145/2187836.2187950 The 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, Canada, July 11-15, 2021. ACM, 2531-2535.

[2] Aris Anagnostopoulos, Carlos Castillo, Adriano Fazzone, Stefano Leonardi, and ;
Evimaria Terzi. 2018. Algorithms for Hiring and Outsourcing in the Online https://d91.org/10.1145/3404835434§2789
Labor Market. In Proceedings of the 24th ACM SIGKDD International Conference [16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, DlstrlbuAted Representations ofWords and Phrases and Their Compo'smonahtyiln
2018, Yike Guo and Faisal Farooq (Eds.). ACM, 1109-1118. https://doi.org/10. Proceedings of the 26th International Conference on Neural Information Processing
1145/3219819.3220056 Systems - Volume 2 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates Inc., Red

Giorgio Barnabo, Adriano Fazzone, Stefano Leonardi, and Chris Schwiegelshohn. Hook, NY, USA, 3111-3119. .
2019. Algorithms for Fair Team Formation in Online Labour Marketplaces. In [17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Companion of The 2019 World Wide Web Conference, WWW 2019, San Francisco Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

CA, USA, May 13-17, 2019, Sihem Amer-Yahia, Mohammad Mahdian, Ashish Goel, %@Lfinsg;(gfighlﬁ‘;%ﬁk%‘g&ar %:ilgigf Sztaecix}::;yLE eF\gItlo’ Ij\ﬁigtiienBRa?i?x?d Is\é}l'lliﬁﬁ
Geert-Jan Houben, Kristina Lerman, Julian J. McAuley, Ricardo Baeza-Yates, and Jant, Y, ’ 8, Jun) ’

Leila Zia (Eds.). ACM, 484-490. https://doi.org/10.1145/3308560.3317587 Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
. N . . . Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
Adil Baykasoglu, Turkay Dereli, and Sena Das. 2007. Project Team Selection

. S) H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
Us“?g Fuzzy Optimization Approach. Cybern. Syst. 38, 2 (2007), 155-185. https: ran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-
//doi.org/10.1080/01969720601139041

. . . an-imperative-style-high-performance- deep-learning-library.pdf
[5] Edmun@ H. Durfee,]an*{es C. Boerkoel Jr., and Jason Sleight. 2014. Using hybrid [18] E. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
scheduling for the semi-autonomous formation of expert teams. Future Gener. :
N . Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
Comput. Syst. 31 (2014), 200-212. https://doi.org/10.1016/j.future.2013.04.008

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
[6] Erin Fitzpatrick and Ronald G. Askin. 2005. Forming effective worker teams with peau, ¥ . snay
lti-functional skill . ts. C ¢ Ind. Eng. 48, 3 (2005), 593608 Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
multi-functional skill requirements. Comput. Ind. Eng. 48, , 593-608. . . .]
quir P . 8- R Pengda Qin, Weiran Xu, and Jun Guo. 2016. A novel negative sampling based on
[7] Matthew E. Gaston, John Simmons, and Marie desJardins. 2004. Adapting Net- . . .
. . L ;) TFIDF for learning word representation. Neurocomputing 177 (2016), 257-265.
work Structure for Efficient Team Formation. In Artificial Multiagent Learning,

; . https://doi.org/10.1016/j.neucom.2015.11.028
Izaoagjrzlfiolr:rlsi};:—igOéi Aﬁ Aﬁ AI ;Fall Sly_ r;zp O}ii?m /frllngton,'VA, /L]]_‘s? Oc;gber 22_,24/’ [20] Radin Hamidi Rad, Ebrahim Bagheri, Mehdi Kargar, Divesh Srivastava, and
o \ ress, 176, htipsy//wiww.aaal.org/LIbrary/Symposia Jaroslaw Szlichta. 2021. Retrieving Skill-Based Teams from Collaboration Net-
Fall/2004/fs04-02-001.php

(8] Christophe Van Gysel and Maarten de Rijke. 2018. Pytrec_eval: An Extremely works. In SIGIR °21: The 44th International ACM SIGIR Conference on Research

d Devel, tin I tion Retrieval, Virtual Event, Canad ly 11-15, 2021.
Fast Python Interface to trec_eval. In The 41st International ACM SIGIR Conference and Development in Information Retrieval, Virtual Event, Canada, July ’

ACM, 2015-2019. h : i 10.1145/3404835.34631
on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, Rz(x.:dir; P;)arilidio Rad I;E)Pssse/:{sol“la(:ig/f\/lihdi ?(/z?r Oar8 ?Zris?:wogzlichta and Ebrahim
USA, July 08-12, 2018, Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison, > ’ gar, y

Yiqun Liu, and Emine Yilmaz (Eds.). ACM, 873-876. https:/doi.org/10.1145/ Bagheri. 2020. Lear'mng to Form Skill-based T5§ms of Experts. In CIKM "20: The
3209978.3210065 29th ACM International Conference on Information and Knowledge Management,

Virtual Event, Ireland, October 19-23, 2020. ACM, 2049-2052. https://doi. 10.
Damon Horowitz and Sepandar D. Kamvar. 2010. The anatomy of a large-scale iriua’ Lvent, ‘retand, Getober 0 ’ ps://dot.org/

1145/3340531.3412140
social search engine. In Proceedings of the 19th International Conference on World /

Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010. ACM, e Ehtahim Bashons 2021 BUTEL. A Bython besed Nl Toom Lot
431-440. https://doi.org/10.1145/1772690.1772735

[10] Damon Horowitz and Sepandar D. Kamvar. 2012. Searching the village: models Toolkit. In CIKM °21: The 340th ACM International Confe ererfce on Information and

X Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021,

and methods for social search. Commun. ACM 55, 4 (2012), 111-118. https: Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang
//doi.org/10.1145/2133806.2133830 > > > >

[11] Mehdi Kargar and Aijun An. 2011. Discovering top-k teams of experts with/with- EzglgngEﬁll)uiEA:nggeét;‘lsizia };tgfg :/éi?égﬁélgr';gj‘f:j? ?j:?gg::iio dellin,
out a leader in social networks. In Proceedings of the 20th ACM Conference on)k : P &

Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges

October 24-28, 2011, Craig Macdonald Iad’h Ounis anli Tan Rutfwen (Eds). ACM, for NLP Frameworks. ELRA, Valletta, Malta, 45-50. http://is.muni.cz/publication/

985-994. hitps://dof.org/10.1145/2063576.2063718 ?’i?::z:rli.enza Palash Goyal, and Emilio Ferrara. 2019. Deep Neural Networks

[12] Jérome Kunegis, Julia Preusse, and Felix Schwagereit. 2013. What is the added for Opti P 1T ’ C Yf ’ Frontiers Bie D § 9 2619 & https//doi.ore/
value of negative links in online social networks?. In 22nd International World l(())r33§97;4:112ta erlng 03(1)13051 on. Frontiers Big Data 2 (), 14. ps://doi.org

Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Daniel) Sozi) d o ides Gioni h . h probl d
Schwabe, Virgilio A. F. Almeida, Hartmut Glaser, Ricardo Baeza-Yates, and Sue B. [25] Mauro Sozio and Aristides 10TS- 2010. The communlty—seare prob-em an

Moon (Eds.). International World Wide Web Conferences Steering Committee / how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD

ACM 727—.7.?}6 https://doi.ore/10.1145/2488388.2488452 International Conference on Knowledge Discovery and Data Mining, Washington,

g . ps://dol.org/10. . DC, USA, July 25-28, 2010, Bharat Rao, Balaji Krishnapuram, Andrew Tomkins,

&

[4

=

[19

[21

[9

=

[22

[23

[24

[13] Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in . - e
social networks. In Proceedings of the 15th ACM SIGKDD International Conference and' Qiang Yang (E.ds')',ACM’ 939-948. https.//dol.org/lO.1145/1835'804.'1835923
; o : [26] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-
on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009. llab ive filteri ia d . .. li " "
ACM, 467-476. https://doi.org/10.1145/1557019.1557074 n cota Or?me tering via dynamic negat“}'le ‘tfl“; e In The 36th In-
[14] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences ternational ACM SIGIR conference on research and development in Information

Retrieval, SIGIR ’13, Dublin, Ireland - July 28 - August 01, 2013. ACM, 785-788.

and Documents. In Proceedings of the 31th International Conference on Machine https://doi.org/10.1145/2484028.2484126

3917

https://doi.org/10.1145/2187836.2187950
https://doi.org/10.1145/3219819.3220056
https://doi.org/10.1145/3219819.3220056
https://doi.org/10.1145/3308560.3317587
https://doi.org/10.1080/01969720601139041
https://doi.org/10.1080/01969720601139041
https://doi.org/10.1016/j.future.2013.04.008
https://www.aaai.org/Library/Symposia/Fall/2004/fs04-02-001.php
https://www.aaai.org/Library/Symposia/Fall/2004/fs04-02-001.php
https://doi.org/10.1145/3209978.3210065
https://doi.org/10.1145/3209978.3210065
https://doi.org/10.1145/1772690.1772735
https://doi.org/10.1145/2133806.2133830
https://doi.org/10.1145/2133806.2133830
https://doi.org/10.1145/2063576.2063718
https://doi.org/10.1145/2488388.2488452
https://doi.org/10.1145/1557019.1557074
http://proceedings.mlr.press/v32/le14.html
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1145/3404835.3462789
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1016/j.neucom.2015.11.028
https://doi.org/10.1145/3404835.3463105
https://doi.org/10.1145/3340531.3412140
https://doi.org/10.1145/3340531.3412140
https://doi.org/10.1145/3459637.3481992
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.3389/fdata.2019.00014
https://doi.org/10.3389/fdata.2019.00014
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/2484028.2484126

	Abstract
	1 Introduction
	2 Neural Team Formation
	3 System Overview
	3.1 Teams Sparse Matrix Representation
	3.2 Neural Model Training
	3.3 Performance Evaluation

	4 Quick Starthttps://github.com/fani-lab/opentf/blob/main/quickstart.ipynb
	5 Concluding Remarks
	References

