
RePair: An Extensible Toolkit to Generate Large-Scale Datasets
forQuery Refinement via Transformers

Yogeswar Lakshmi Narayanan
University of Windsor, Canada

lakshmiy@uwindsor.ca

Hossein Fani
University of Windsor, Canada

hfani@uwindsor.ca

ABSTRACT
Query refinement is the process of transforming users’ queries
into new refined versions without semantic drift to enhance the
relevance of search results. Prior query refiners were benchmarked
on web query logs following weak assumptions that users’ input
queries within a search session are about a single topic and improve
gradually, which is not necessarily accurate in practice. In this pa-
per, we contribute RePair, an open-source configurable toolkit to
generate large-scale gold-standard benchmark datasets whose pairs
of (original query, refined versions) are almost surely guaranteed to
be in the same semantic context. RePair takes a dataset of queries
and their relevance judgements (e.g., msmarco or aol), a sparse or
dense retrieval method (e.g., bm25 or colbert), and an evaluation
metric (e.g., map or mrr), and outputs refined versions of queries,
each of which with the relevance improvement guarantees under
the retrieval method in terms of the evaluation metric. RePair ben-
efits from text-to-text-transfer-transformer (t5) to generate gold-
standard datasets for any input query sets and is designed with
extensibility in mind. Out of the box, RePair includes gold-standard
datasets for aol and msmarco.passage as well as benchmark re-
sults of state-of-the-art supervised query suggestion methods on
the generated datasets at github.com/fani-lab/RePair.
CCS CONCEPTS
• Information systems → Query suggestion; Query reformu-
lation.

KEYWORDS
Gold Standard Dataset; Query Refinement; Reproducibility;
ACM Reference Format:
Yogeswar Lakshmi Narayanan and Hossein Fani. 2023. RePair: An Exten-
sible Toolkit to Generate Large-Scale Datasets for Query Refinement via
Transformers. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management (CIKM ’23), October 21–25,
2023, Birmingham, United Kingdom. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3583780.3615129

1 INTRODUCTION
The foremost means of information retrieval, search engines, have
difficulty searching into knowledge repositories, e.g., the web, since

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3615129

Relevance

Judgments Jq

Relevance

Judgments Jq

Queries Q

{0,1} {1,0}

Judgments J'q

Queries Q'
6 Encoders

6 Decoders

Corpus

D

q1

`

q2

`

q3

`

qn

`

Ranker r

Candidates
Cq

Metric m

Refined Queries

Rqrm

q q3

*

q1

*

q

Query Prediction

q

Performance Evaluation

Gold Standard Curation

Encoder
Decoder

i

E
n
co

d
e
r

D
e
co

d
e
r

Transformer Fine-Tuning

qpo

Jq

JqJpJo

Figure 1: RePair’s pipeline.

they are not tailored to the users’ differing information needs. For-
mulating an effective query for an information retrieval system is
challenging, even for experienced users, since it requires predicting
which terms appear in documents relevant to the information need.
Queries are under-specified or contain ambiguous terms that also
retrieve irrelevant documents. Relieving the burden on the users,
query refinement is the process of transforming the user’s original
query 𝑞 into a newly refined version 𝑞∗ that more accurately reflects
the information need and enhances the relevance of search results.

Existing works can be divided into two categories: (1) query
refinement methods and (2) benchmark datasets. On the one hand,
we have supervised machine learning methods that predict refined
versions of an original query [1, 3] given search session information
such as user information [4], query time [6], and search history
(query logs) [1]. For training and evaluation, such methods included
web retrieval datasets like aol [12] or msmarco [10] following weak
assumptions that users’ input queries improve gradually within a
search session, i.e., the last query where the user ends her search
session is the refined version of her original query [3]. However,
Tamannaee et al. [15] have shown potential semantic (topic) drift
of queries in users’ search session; a user might search for multiple
topics in one session, and hence, irrelevant queries would be paired.

On the other hand, recently, we have observed new research
efforts to produce benchmark datasets free of semantic drifts that
are specifically designed to train and evaluate the efficacy of query
refinement methods for web or non-web information retrieval sys-
tems [2, 15, 17]. Among the first, Tamannaee et al. [15] proposed

5376

https://orcid.org/0009-0002-3197-7773
https://orcid.org/0000-0002-6033-6564
https://github.com/fani-lab/RePair
https://doi.org/10.1145/3583780.3615129
https://doi.org/10.1145/3583780.3615129
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615129&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yogeswar Lakshmi Narayanan and Hossein Fani

Table 1: Comparison of existing systems for generating gold-standard datasets for query refinement.

op
en

-s
ou

rc
e

to
ol
ki
t

re
pr

od
uc

ib
le

sc
al
ab

le

de
p e

nd
en

ci
es

qu
er
y
se
ts

tr
an

sf
om

er
s

ra
nk

er
s

m
et
ri
cs

out of the box

ReQue [15] ✓ ✓ ✓ ×
anserini
pyserini
trec_eval

any × sparse trec_eval

robust04.bm25.map
clueweb09.bm25.map
clueweb12.bm25.map

gov2.bm25.map
Arabzadeh et al. [2] × × - - - msmarco.passage ✓ bm25 map msmarco.passage.bm25.map

RePair ✓ ✓ ✓ ✓
pyserini
trec_eval

any ✓
sparse
dense trec_eval

msmarco.passage.{bm25, colbert}.{map, mrr}
aol.title.{bm25, colbert}.{map, mrr}

aol.url.title.{bm25, colbert}.{map, mrr}

ReQue1, an open-source configurable and reproducible pipeline to
control the semantic drift and generate a gold-standard dataset
from an input set of original queries along with their relevance
judgements. ReQue applies a host of unsupervised query refiners,
from simple lexical lemmatizers to complex pseudo-relevance-based
methods on the set of original queries. Then, those revised ver-
sions of the original query that improve the performance of a re-
trieval method (e.g., bm25) in terms of an evaluation metric (e.g.,
map) using the query’s relevance judgment J𝑞 were kept as the
refined queries R𝑞 = {𝑞∗}. This way, both the original query and
the refined versions R𝑞 are almost surely guaranteed to be in the
same semantic context. However, ReQue is computationally costly
for large-scale query sets such as aol or msmarco due to its ex-
haustive application of all refinement methods on each query. To
address scalability, Arabzadeh et al. [2] applied Nogueira et al.’s
pretrained doct5query [11] transformer and generated refined
questions (queries) for msmarco’s passage dataset for a question-
answering task, known as msmarco.passage. Arabzadeh et al. fed
an original question to the doct5query and selected the generated
sequence of tokens as a refined version should it increases the bm25
retrieval performance based on the map metric. Arabzadeh et al.’s
work is, however, case-specific, considerably less extensible, and
heavily depends on doct5query; it is incapable of accommodating
different or new datasets, let alone no reproducible implementation
is available; only the final generated dataset is released.

In this paper, like ReQue [15], we propose a principled domain-
agnostic pipeline to generate refined queries while withholding the
same semantic context between (original query→ refined query)
pairs. We contribute RePair, an open-source and configurable stan-
dard toolkit to support supervised query refinement research with
large-scale gold-standard datasets from a variety of domains. As
shown in Figure 1, RePair takes: (1) a query set Q = {𝑞} along with
relevance judgements J = {J𝑞 : 𝑞 ∈ Q} and optional contextual
information such as time or user information X = {X𝑞 : 𝑞 ∈ Q}, (2)
an information retrieval method (ranker), 𝑟 , and (3) an evaluation
metric,𝑚, and outputs a gold-standard dataset R𝑟𝑚 = {R𝑞𝑟𝑚} that
includes R𝑞𝑟𝑚 = {𝑞∗} for each of the queries in the input query
set Q such that 𝑞∗ ∈ R𝑞𝑟𝑚 retrieves better search results under the
ranker 𝑟 and evaluation metric𝑚.

Table 1 compares RePairwith related works. In contrast to exist-
ing systems, especially when scalability, reproducibility, and exten-
sibility are of prime concerns, RePair employs an object-oriented
design that is flexible to customization and smoothly incorporates
a new query set as well as a new transformer along with parallel

1github.com/fani-lab/ReQue

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yogeswar Lakshmi Narayanan and Hossein Fani

Table 1: Comparison of existing systems for generating gold-standard datasets for query refinement.

op
en

-s
ou

rc
e

to
ol
ki
t

re
pr

od
uc

ib
le

sc
al
ab

le

de
pe

nd
en

ci
es

qu
er
y
se
ts

tr
an

sf
om

er
s

ra
nk

er
s

m
et
ri
cs

out of the box

ReQue [16] ✓ ✓ ✓ ×
anserini
pyserini
trec_eval

any × sparse trec_eval

robust04.bm25.map
clueweb09.bm25.map
clueweb12.bm25.map

gov2.bm25.map
Arabzadeh et al. [2] × × - - - msmarco.passage ✓ bm25 map msmarco.passage.bm25.map

RePair ✓ ✓ ✓ ✓
pyserini
trec_eval

any ✓
sparse
dense trec_eval

msmarco.passage.{bm25, colbert}.{map, mrr}
aol.title.{bm25, colbert}.{map, mrr}

aol.url.title.{bm25, colbert}.{map, mrr}

especially when a system is newly deployed, and even later on, the
log rarely becomes as rich as that of web search engines [3].

On the other hand, recently, we have observed new research
efforts to produce benchmark datasets free of semantic drifts that
are specifically designed to train and evaluate the efficacy of query
refinement methods for web or non-web information retrieval sys-
tems [2, 16, 18]. Among the first, Tamannaee et al. [16] proposed
ReQue1, an open-source configurable and reproducible pipeline to
control the semantic drift and generate a gold-standard dataset
from an input set of original queries along with their relevance
judgements. ReQue applies a host of unsupervised query refiners,
from simple lexical lemmatizers to complex pseudo-relevance-based
methods on the set of original queries. Then, those revised ver-
sions of the original query that improve the performance of a re-
trieval method (e.g., bm25) in terms of an evaluation metric (e.g.,
map) using the query’s relevance judgment J𝑞 were kept as the
refined queries R𝑞 = {𝑞∗}. This way, both the original query and
the refined versions R𝑞 are almost surely guaranteed to be in the
same semantic context. However, ReQue is computationally costly
for large-scale query sets such as aol or msmarco due to its ex-
haustive application of all refinement methods on each query. To
address scalability, Arabzadeh et al. [2] applied Nogueira et al.’s
pretrained doct5query [12] transformer and generated refined
questions (queries) for msmarco’s passage dataset for a question-
answering task, known as msmarco.passage. Arabzadeh et al. fed
an original question to the doct5query and selected the generated
sequence of tokens as a refined version should it increases the
bm25 retrieval performance based on the map metric. Arabzadeh et
al.’s work is, however, case-specific, considerably less extensible,
and heavily depends on doct5query; hence, it is incapable of ac-
commodating different or new datasets, let alone no standard and
reproducible implementation is publicly available; only the final
generated dataset is publicly released.

In this paper, like ReQue [16], we propose a principled domain-
agnostic pipeline to generate refined queries while withholding the
same semantic context between (original query→ refined query)
pairs. We contribute RePair, an open-source and configurable stan-
dard toolkit to support supervised query refinement research with
large-scale gold-standard datasets from a variety of domains. As
shown in Figure 1, RePair takes: (1) a query set Q = {𝑞} along with
relevance judgements J = {J𝑞 : 𝑞 ∈ Q} and optional contextual
information such as time or user information X = {X𝑞 : 𝑞 ∈ Q}, (2)
an information retrieval method (ranker), 𝑟 , and (3) an evaluation
metric,𝑚, and outputs a gold-standard dataset R𝑟𝑚 = {R𝑞𝑟𝑚} that
1github.com/fani-lab/ReQue

./src/main.py

from dal.msmarco import *

from mdl.mt5w import *

def run(cmd=['pair','finetune','predict','search','eval','agg'],..):

if 'msmarco.passage' in domain_list:

if 'pair' in cmd: msmarco.to_pair(pairing, concat=True)

if 'finetune' in cmd: finetune(...)

if 'predict' in cmd: predict(...)

if 'search' in cmd: search(...)

if 'eval' in cmd: evaluate(...)

if 'agg' in cmd: agg(...)

./src/dal/ds.py

def pair(datapath, Qfilename, concat=True):

def search(queries, ranker, topK, batch, ...):

def aggregate(original, changes, metrics, ...)

def box(original, changes, metrics, ...)

./src/dal/msmarco.py

@override

def pair(datapath, Qfilename, concat=True):

./src/dal/aol.py

@override

def pair(datapath, Qfilename, concat=True):

./src/mdl/mt5w.py => t5 wrapper

def finetune(pretrained_dir, in_type='query', out_type='doc', ...):

def predict(iter, output, vocab_model_path, gcloud=False):

./src/evl/trecw.py => trec_eval wrapper

def evaluate(in_docids, out_metrics, qrels, metric, topk=10, ...):

Figure 2: RePair’s driver.

includes R𝑞𝑟𝑚 = {𝑞∗} for each of the queries in the input query
set Q such that 𝑞∗ ∈ R𝑞𝑟𝑚 retrieves better search results under the
ranker 𝑟 and evaluation metric𝑚.

Table 1 compares RePairwith related works. In contrast to exist-
ing systems, especially when scalability, reproducibility, and exten-
sibility are of prime concerns, RePair employs an object-oriented
design that is flexible to customization and smoothly incorporates
a new query set as well as a new transformer along with parallel
processing of large-scale datasets. Community members can use
RePair to generate new gold-standard datasets for any input query
sets and their associated relevance judgements. The codebase, tutori-
als, and case studies on msmarco.passage and aol can be obtained
with cc-by-nc-sa-4.0 license at github.com/fani-lab/RePair.

2 SYSTEM OVERVIEW
Figure 1 demonstrates the RePair’s main components and work-
flowwith the driver code shown in Figure 2, which will be explained
hereafter. We also provide a mathematical formalization of RePair
for consistent interpretation and verification of components.

Figure 2: RePair’s driver.

processing of large-scale datasets. Community members can use
RePair to generate new gold-standard datasets for any input query
sets and their associated relevance judgements. The codebase, tutori-
als, and case studies on msmarco.passage and aol can be obtained
with cc-by-nc-sa-4.0 license at github.com/fani-lab/RePair.
2 SYSTEM OVERVIEW
Figure 1 demonstrates the RePair’s components and workflowwith
the driver code shown in Figure 2, which are explained hereafter.

2.1 Transformer Fine-Tuning [pair,finetune]
In RePair, we have implemented a flexible component for training
or fine-tuning a transformer 𝜏 based on any pairing strategies of
queries and relevant documents, i.e., (J𝑞 → 𝑞) or (𝑞 → J𝑞), and
in case there are more than one relevant documents for a query,
|J𝑞 | > 1, whether to replicate the pairs (default) or to concatenate
(J+

𝑞) the relevant documents as a single document. Training or fine-
tuning can happen on subparts or the entire text body of the relevant
documents as in aol where documents are webpages including
url, title, and text. RePair can augment the query’s contextual
information such as the user or time information as a pretext to

5377

https://github.com/fani-lab/ReQue
https://github.com/fani-lab/RePair

RePair: An Extensible Toolkit to Generate Large-Scale Datasets for Query Refinement via Transformers CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
RePair: An Extensible Toolkit to Generate Large-Scale Datasets for Query Refinement via Transformers CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

2.1 Transformer Fine-Tuning [pair,finetune]
In RePair, we have implemented a flexible component for training
or fine-tuning a transformer 𝜏 based on any pairing strategies of
queries and relevant documents, i.e., (J𝑞 → 𝑞) or (𝑞 → J𝑞), and
in case there are more than one relevant documents for a query,
|J𝑞 | > 1, whether to replicate the pairs (default) or to concatenate
(J+

𝑞) the relevant documents as a single document. Training or fine-
tuning can happen on subparts or the entire text body of the relevant
documents as in aol where documents are webpages including
url, title, and text. RePair can augment the query’s contextual
information such as the user or time information as a pretext to
the input of the transformer as (X𝑞 : J𝑞 → 𝑞) or (X𝑞 : 𝑞 → J𝑞).
The configuration parameters in this component are the original
query setQ = {𝑞}, relevant documents of queriesJ = {J𝑞}, paring
strategy (J𝑞 → 𝑞) or (𝑞 → J𝑞) as well as to replicate or concatenate
pairs when |J𝑞 | > 1 and optional X𝑞 .

2.2 Refined Query Prediction [predict]
The purpose of this component is to predict a set of candidate
queries C𝑞 = {𝑞′}, each of which has the potential to serve as a
refined query for an original query 𝑞. The configuration param-
eter in this component is a trained or fine-tuned transformer 𝜏
and an input to the transformer that could be a query 𝑞 or its rel-
evant documents J𝑞 with an optional context X𝑞 . We feed input
to 𝜏 and the output prediction is considered as a candidate query
𝑞′; notationally, 𝜏 (.) = 𝑞′. Modern transformers apply top-𝑘 ran-
dom selection [6] at their decoders as opposed to beam search [15]
to generate novel outputs and avoid common phrases and repeti-
tive text. Top-𝑘 random selection yields non-deterministic output
generation during inference given the same input, i.e., 𝜏𝑖 (.) = 𝑞′

𝑖
that can be employed to generate a collection of candidate queries
C𝑞 = {𝑞′

𝑖
}𝑘
𝑖=1, as opposed to a single candidate query C𝑞 = 𝑞′.

2.3 Performance Evaluation
This component of RePair has two subcomponents:

2.3.1 Relevant Documents Retrieval [search]. Given the can-
didate queries C𝑞 generated by the refined query prediction com-
ponent, RePair searches for the relevant documents for both the
original query 𝑞 and each of the candidate queries 𝑞′ ∈ C𝑞 from
the corpus. Hence, RePair has two configuration parameters: the
corpusD and an information retrieval method, called ranker 𝑟 , that
retrieves relevant documents and ranks them based on relevance
scores. RePair integrates pyserini [9], which provides efficient
implementations of sparse and dense rankers, including bm25, qld
(query likelihood with Dirichlet smoothing), and colbert [8]. As
seen in Figure 1, RePair’s output in this component is a ranked list
of documents retrieved by the ranker 𝑟 for the original query 𝑞 as
well as each of the candidate queries 𝑞′.

2.3.2 Retrieval Evaluation [eval]. Given an original query 𝑞
and its relevance judgements J𝑞 , i.e., true ranked list of relevant
documents for 𝑞, RePair evaluates each of its candidates queries
𝑞′ ∈ C𝑞 based on how they improve the performance of ranker
𝑟 with respect to an evaluation metric 𝑚. Then, a candidate 𝑞′

that provides performance improvements compared to the original
query 𝑞 is selected as the refined query 𝑞∗ ∈ R𝑞𝑟𝑚 for that original

./src/param.py

'box':{

'gold': 'refined_q_metric >= original_q_metric and refined_q_metric > 0',

'platinum':'refined_q_metric > original_q_metric',

'diamond': 'refined_q_metric > original_q_metric and refined_q_metric == 1'

'new_criteria': '(refined_q_metric - original_q_metric) >= +0.2'}

Figure 3: Selection criteria for being a refined query in eq.1.

qid order query bm25.map
0cc411681d1441 -1 staple com 0.037
0cc411681d1441 pred.8 staple pubs 1.0
0cc411681d1441 pred.7 staple england pub 0.5
0cc411681d1441 pred.1 staple east of england 0.1
0cc411681d1441 pred .10 staple 0.0385
0cc411681d1441 pred.3 staple england 0.0385

Figure 4: RePair’s gold-standard dataset file structure.

Table 2: Stats on msmarco.passage and aol query sets.
| Q | avg |𝑞 | |D | avg | J𝑞 | #users

msmarco.passage 502,939 5.9675 8,841,823 61.6940 -
aol.title2 4,459,613 3.5849 1,473,341 21.8372 657,426
aol.url.title 4,672,506 3.5817 1,525,586

query under the ranker 𝑟 and metric𝑚. As a result, this compo-
nent has a single configuration parameter; an evaluation metric𝑚.
Formally, a list of refined queries R𝑞𝑟𝑚 is computed based on:

R𝑞𝑟𝑚 = {𝑞∗ = 𝑞′ ∈ C𝑞 |𝑟𝑚 (𝑞′ : J𝑞) > 𝑟𝑚 (𝑞 : J𝑞)} (1)

where 𝑟𝑚 (. : J𝑞) is the performance of the ranker 𝑟 given the
relevance judgement J𝑞 measured by the evaluation metric𝑚. To
calculate 𝑟𝑚 (. : J𝑞), RePair internally uses trec_eval which pro-
vides the standard implementation of information retrieval metrics
such as map, mrr, and ndcg. In RePair, we crown a refined query

𝑞∗ as an oracle query K
𝑞 if it achieves the maximum retrieval perfor-

mance, i.e., 𝑟𝑚 (K
𝑞)=1. More interestingly, since RePair stores the

performances for all the candidate queries in files, we can customize
eq.1 or include multiple selection criteria, as shown in Figure 3.

2.4 Gold-Standard Dataset Curation [agg]
Given the original query set 𝑄 = {𝑞}, RePair aggregates the eval-
uation results 𝑅𝑞𝑟𝑚 for 𝑞 ∈ Q based on eq. 1, and finally stores
the gold-standard dataset R𝑟𝑚 in Q .𝑟 .𝑚.agg.gold.tsv file, each
entry of which includes:
(1) qid: id of the original query 𝑞 ∈ 𝑄 ;
(2) order: -1 if query is an original query, else pred.i as the 𝑖-th

candidate query that becomes a refined query in descending
order of metric values;

(3) query: text body of the original query or the refined query,
depending on the value of the order;

(4) 𝑟 .𝑚: performance of query under the ranker 𝑟 and metric𝑚.
For instance, the gold-standard dataset for aol.title using the
retrieval method bm25 and based on the evaluation metric map is
stored in aol.title.bm25.map.agg.gold.tsv and few of its en-
tries are shown in Figure 4. As seen, for the original query ‘staple
com’, the retrieval performance is 0.037while its best refined query
‘staple pubs’ is an oracle with a map=1.0.

2While a webpage has url, it may be missing title. In aol.title, we filter out queries
whose relevant webpages have no title.

Figure 3: Selection criteria for being a refined query in eq.1.

the input of the transformer as (X𝑞 : J𝑞 → 𝑞) or (X𝑞 : 𝑞 → J𝑞).
The configuration parameters in this component are the original
query setQ = {𝑞}, relevant documents of queriesJ = {J𝑞}, paring
strategy (J𝑞 → 𝑞) or (𝑞 → J𝑞) as well as to replicate or concatenate
pairs when |J𝑞 | > 1 and optional X𝑞 .

2.2 Refined Query Prediction [predict]
The purpose of this component is to predict a set of candidate
queries C𝑞 = {𝑞′}, each of which has the potential to serve as a
refined query for an original query 𝑞. The configuration param-
eter in this component is a trained or fine-tuned transformer 𝜏
and an input to the transformer that could be a query 𝑞 or its rel-
evant documents J𝑞 with an optional context X𝑞 . We feed input
to 𝜏 and the output prediction is considered as a candidate query
𝑞′; notationally, 𝜏 (.) = 𝑞′. Modern transformers apply top-𝑘 ran-
dom selection [5] at their decoders as opposed to beam search [14]
to generate novel outputs and avoid common phrases and repeti-
tive text. Top-𝑘 random selection yields non-deterministic output
generation during inference given the same input, i.e., 𝜏𝑖 (.) = 𝑞′

𝑖
that can be employed to generate a collection of candidate queries
C𝑞 = {𝑞′

𝑖
}𝑘
𝑖=1, as opposed to a single candidate query C𝑞 = 𝑞′.

2.3 Performance Evaluation
This component of RePair has two subcomponents:

2.3.1 Relevant Documents Retrieval [search]. Given the can-
didate queries C𝑞 generated by the refined query prediction com-
ponent, RePair searches for the relevant documents for both the
original query 𝑞 and each of the candidate queries 𝑞′ ∈ C𝑞 from
the corpus. Hence, RePair has two configuration parameters: the
corpusD and an information retrieval method, called ranker 𝑟 , that
retrieves relevant documents and ranks them based on relevance
scores. RePair integrates pyserini [8], which provides efficient
implementations of sparse and dense rankers, including bm25, qld,
and colbert [7]. As seen in Figure 1, RePair’s output in this com-
ponent is a ranked list of documents retrieved by the ranker 𝑟 for
the original query 𝑞 as well as each of the candidate queries 𝑞′.

2.3.2 Retrieval Evaluation [eval]. Given an original query 𝑞
and its relevance judgements J𝑞 , i.e., true ranked list of relevant
documents for 𝑞, RePair evaluates each of its candidates queries
𝑞′ ∈ C𝑞 based on how they improve the performance of ranker
𝑟 with respect to an evaluation metric 𝑚. Then, a candidate 𝑞′

that provides performance improvements compared to the original
query 𝑞 is selected as the refined query 𝑞∗ ∈ R𝑞𝑟𝑚 for that original
query under the ranker 𝑟 and metric𝑚. As a result, this compo-
nent has a single configuration parameter; an evaluation metric𝑚.
Formally, a list of refined queries R𝑞𝑟𝑚 is computed based on:

R𝑞𝑟𝑚 = {𝑞∗ = 𝑞′ ∈ C𝑞 |𝑟𝑚 (𝑞′ : J𝑞) > 𝑟𝑚 (𝑞 : J𝑞)} (1)

qid order query bm25.map
0cc411681d1441 -1 staple com 0.037
0cc411681d1441 pred.8 staple pubs 1.0
0cc411681d1441 pred.7 staple england pub 0.5
0cc411681d1441 pred.1 staple east of england 0.1
0cc411681d1441 pred .10 staple 0.0385
0cc411681d1441 pred.3 staple england 0.0385

Figure 4: RePair’s gold-standard dataset file structure.

Table 2: Stats on msmarco.passage and aol query sets.
| Q | avg |𝑞 | |D | avg | J𝑞 | #users

msmarco.passage 502,939 5.9675 8,841,823 61.6940 -
aol.title2 4,459,613 3.5849 1,473,341 21.8372 657,426
aol.url.title 4,672,506 3.5817 1,525,586

where 𝑟𝑚 (. : J𝑞) is the performance of the ranker 𝑟 given the
relevance judgement J𝑞 measured by the evaluation metric𝑚. To
calculate 𝑟𝑚 (. : J𝑞), RePair internally uses trec_eval which pro-
vides the standard implementation of information retrieval metrics
such as map, mrr, and ndcg. In RePair, we crown a refined query

𝑞∗ as an oracle query K
𝑞 if it achieves the maximum retrieval perfor-

mance, i.e., 𝑟𝑚 (K
𝑞)=1. More interestingly, since RePair stores the

performances for all the candidate queries in files, we can customize
eq.1 or include multiple selection criteria, as shown in Figure 3.

2.4 Gold-Standard Dataset Curation [agg]
Given the original query set Q = {𝑞}, RePair aggregates the eval-
uation results R𝑞𝑟𝑚 for 𝑞 ∈ Q based on eq. 1, and finally stores
the gold-standard dataset R𝑟𝑚 in Q .𝑟 .𝑚.agg.gold.tsv file, each
entry of which includes:
(1) qid: id of the original query 𝑞 ∈ Q;
(2) order: -1 if query is an original query, else pred.i as the 𝑖-th

candidate query that becomes a refined query in descending
order of metric values;

(3) query: text body of the original query or the refined query;
(4) 𝑟 .𝑚: performance of query under the ranker 𝑟 and metric𝑚.
For instance, the gold-standard dataset for aol.title using the
retrieval method bm25 and based on the evaluation metric map is
stored in aol.title.bm25.map.agg.gold.tsv and few of its en-
tries are shown in Figure 4. As seen, for the original query ‘staple
com’, the retrieval performance is 0.037while its best refined query
‘staple pubs’ is an oracle with a map=1.0.

3 CASE STUDY
Out of the box, RePair includes gold-standard datasets for aol [12]
and msmarco.passage [10] query sets based on bm25 (sparse) and
colbert (dense) as the ranker, and mrr and map as the evaluation
metrics. Table 2 summarizes these datasets. For msmarco.passage,
we selected the training part. We set the pairing strategy to (J+

𝑞 →
𝑞) where J+

𝑞 is the concatenation of all the relevant passages if
|J𝑞 | > 1. Also, msmarco.passage has no contextual information,
X𝑞 = ∅. For aol, we used the reconstructed version of aol by Sean
et al. [9], which includes users’ url clicks as relevance judgements
as well as the crawled at-the-time (2006) urls’ webpages in triples
(url, title, text). We built two corpora for aol whose docu-
ments are either i) title, or ii) concatenation of url and title, i.e.,
url.title of webpages. An important aspect of aol is the query’s
2While a webpage has url, it may be missing title. In aol.title, we filter out queries
whose relevant webpages have no title.

5378

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yogeswar Lakshmi Narayanan and Hossein Fani

Table 3: Sample queries paired with oracle query (
K
𝑞), refined query (𝑞∗), or none (R𝑞𝑟𝑚 = ∅) for 𝑟 =colbert and𝑚=map.

qid 𝑞 colbertmap(𝑞) 𝑞∗ colbertmap(𝑞∗)
100310 cost analyst accountant responsibilities 0.5000 what’s the job description for a cost analyst 1.0000
1001344 where to file 941-pr without payment 0.5714 where is 941 form filed in texas 0.6429msmarco.passage
100161 cortex definition 1.0000 where is the cortex in term 0.0108

ffb1ffc470a8df free kids activities 0.1111 free kids crafts 1.0000
ff2b7cf89c900c helping parents handle aggressive behavior in children 0.0345 child behavior conflicts 0.1250aol.title
0026104dd77f50 virginia office attorney general 0.5000 free credit reports simon cowell 0.0128
0511a70716628f risks of vaginal obstetrical ultrasound 0.3300 ultrasound assisted pregnancy test 1.0000
0598a9db866c6e best sailor 0.1660 godfather in sailor moon fanfiction 0.5000aol.url.title
4001d7502818af3 starck realtor 1.0000 real estate chicagoland 0.0200

Table 4: Stats on gold-standard datasets for 𝑟 =bm25.

𝑚
=
ma
p

avg 𝑟𝑚 (𝑞) |R | avg |𝑞∗ | % avg 𝑟𝑚 (𝑞∗) Δ% #
K
𝑞 %

msmarco.passage 0.0862 414,337 7.4419 82% 0.5704 +562% 176,922 35%
aol.title 0.0252 2,583,023 3.1270 58% 0.4175 +1,556% 649,764 14%
aol.url.title 0.0271 2,421,347 3.5354 52% 0.3997 +1,374% 591,001 13%

𝑚
=
mr
r msmarco.passage 0.1795 472,553 7.3389 93% 0.6137 +593 % 185,414 36%

aol.title 0.1967 2,276,965 3.0543 51% 0.7497 +281% 1,069,531 23%
aol.url.title 0.1754 2,845,642 3.4778 60% 0.6063 +245% 1,037,103 22%

contextual information X𝑞 such time and userid, which can be
employed for personalized or temporal query refinement [16, 18].

We selected t5-base transformer with 220 million parameters as
the transformer 𝜏 and fine-tuned it for 4,000 epochs. At the refined
query prediction step, we used top-10 random sampling decoder
and predicted 10 candidate queries, i.e., |C𝑞 | = 10, by running
𝜏𝑖 (J𝑞) = 𝑞′

𝑖
for 1 ≤ 𝑖 ≤ 10. Statistics, including the average size

of 𝑞∗ and the average mrr and map improvement rate for each of
these gold-standard datasets have been reported in Table 4 for bm25
(sparse) and Table 5 for colbert (dense).
Sparse Retrieval: Table 4 demonstrates that RePair could improve
more than half of the original queries for msmarco.passage and
all variations of aol with respect to map. The largest gold-standard
dataset is associated with aol.title with about 2.6M pairs of
(𝑞 → 𝑞∗), which is 58% of original queries with an average map
increase from 0.025 to 0.417, around +1,500% increase. However, the
richest one is msmarco.passage where about 82% of the original
queries have been improved in terms of map from 0.086 to 0.570.
Notably, in the gold-standard datasets on msmarco.passage and
aol, more than 35% and 13% of queries have been paired with oracle
refined queries with map=1.0.
Dense Retrieval On the one hand, although RePair supports
colbert as a dense information retrieval method, like other dense
retrieval methods, it is tied to extreme resource consumption to
run it on the entire set of candidate queries for msmarco.passage
and aol query sets. On the other hand, although the gold-standard
datasets for these query sets using bm25 include a substantial amount
of pairs, there are original queries 𝑞 none of their candidate queries
𝑞′ were selected as 𝑞∗ due to them being hard for bm25 to fetch
relevant documents and improve the evaluation metrics such as mrr
and map, that is,R𝑞𝑟𝑚 = ∅ for 𝑟 =bm25. In msmarco.passage, there
are 16,841 and 16,227 original queries where bm25was unable to im-
prove map and mrr, respectively. In aol.title and aol.url.title,
the numbers are 159,670 and 210,581 based on map and 104,715 and
206,119 based on mrr. To show RePair’s colbert feature and its
feasibility to improve upon bm25 while saving computational cost,
we ran RePairwith colbert for all original queries with no refined
queries with respect to map for msmarco.passage (16,841 queries).
For aol.title and aol.url.title, we randomly sampled the

Table 5: colbert’s improvement on bm25.map hard queries.
bm25map(𝑞) colbertmap(𝑞) bm25map(𝑞

∗) colbertmap(𝑞∗) Δ+
msmarco.passage 0.3729 0.4237 0.1612 0.3366 4,580
aol.title 0.2657 0.2165 0.0727 0.0970 3,355
aol.url.title 0.2310 0.1894 0.0588 0.0691 2,715

Table 6: Supervised methods’ performance.
gold-standard dataset model rouge-l bleu f1

msmarco.passage.bm25.map
t5-base 42.96 21.15 41.91
acg [3] 37.79 21.66 39.37
hred-qs [13] 31.07 16.78 31.29

aol.title.bm25.map
t5-base 15.55 6.25 14.42
acg [3] 11.20 4.41 11.87
hred-qs [13] 6.05 3.79 6.30

aol.url.title.bm25.map
t5-base 22.13 8.73 20.73
acg [3] 11.21 3.86 11.94
hred-qs [13] 6.72 3.60 7.03

same number of hard queries. From Table 5, colbert could pro-
vide additional refined queries to hard queries in msmarco.passage
and aol, e.g., +4,580 refined queries to msmarco.passage’s hard
queries. Table 3 shows sample queries paired with oracle queries

(K𝑞), refined queries (𝑞∗), or none (R𝑞𝑟𝑚 = ∅) for colbert as the
ranker and map as the metric.
4 BENCHMARKS ON REPAIR’S DATASETS
We employed supervised query suggestion methods, including pre-
trained t5-base, acg [3], and hred-qs [13], to demonstrate a bench-
marking sample on RePair’s generated gold-standard datasets.
Given the gold-standard datasets generated using 𝑟 =bm25 and𝑚=

map, we trained all models on 70% of (𝑞 → 𝑞∗) pairs for 100 epochs.
The models were evaluated on the remaining 30% pairs as the test
set using rouge-l, bleu, and f1-measure. From Table 6, t5-base
outperformed hred-qs and acg for msmarco.passage.bm25.map
and aol.*. We also observe a performance drop for the baselines
for aol.* which is attributed to the small query sizes; the av-
erage query size in msmarco.passage is 7.4419 tokens whereas
aol.title and aol.url.title have queries with average sizes of
3.1270 and 3.5354 tokens, respectively.

5 CONCLUSION AND FUTUREWORK
We presented RePair, an open-source toolkit for query refinement
research. RePair features (1) reproducible, extensible, and domain-
agnostic pipeline for generating gold-standard datasets while con-
trolling semantic drifts, (2) easy reconfiguration for new query
sets in web or non-web domains with the ability to incorporate
additional search session information, (3) modular design that is
flexible to customization and integration of new transformers, re-
trieval methods, or evaluation metrics, and (4), out of the box, large-
scale gold-standard datasets for aol and msmarco-passage query
sets. Future directions include extensions to personalized and time-
aware datasets for query refinement, and hybrid retrieval methods.

5379

RePair: An Extensible Toolkit to Generate Large-Scale Datasets for Query Refinement via Transformers CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES
[1] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2019. Context Atten-

tive Document Ranking and Query Suggestion. In 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR. 385–394.

[2] Negar Arabzadeh, Amin Bigdeli, Shirin Seyedsalehi, Morteza Zihayat, and
Ebrahim Bagheri. 2021. Matches Made in Heaven: Toolkit and Large-Scale
Datasets for Supervised Query Reformulation. In CIKM ’21: The 30th ACM Inter-
national Conference on Information and Knowledge Management, Virtual Event,
Queensland, Australia, November 1 - 5, 2021, Gianluca Demartini, Guido Zuccon,
J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, 4417–4425.
https://doi.org/10.1145/3459637.3482009

[3] Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury. 2017.
Learning to Attend, Copy, and Generate for Session-Based Query Suggestion. In
2017 ACM on Conference on Information and Knowledge Management. 1747–1756.

[4] Pierre Erbacher, Ludovic Denoyer, and Laure Soulier. 2022. Interactive Query
Clarification and Refinement via User Simulation. In SIGIR ’22: The 45th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio
Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM,
2420–2425. https://doi.org/10.1145/3477495.3531871

[5] Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018. Hierarchical Neural Story
Generation. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Vol-
ume 1: Long Papers, Iryna Gurevych and Yusuke Miyao (Eds.). Association for
Computational Linguistics, 889–898. https://doi.org/10.18653/v1/P18-1082

[6] Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. 2008. A unified and discriminative
model for query refinement. In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2008, Singapore, July 20-24, 2008, Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio
Sebastiani, Tat-Seng Chua, and Mun-Kew Leong (Eds.). ACM, 379–386. https:
//doi.org/10.1145/1390334.1390400

[7] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, Jimmy X. Huang,
Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun
Liu (Eds.). ACM, 39–48. https://doi.org/10.1145/3397271.3401075

[8] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible In-
formation Retrieval Research with Sparse and Dense Representations. In SIGIR
’21: The 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, Fernando Diaz,
Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.).
ACM, 2356–2362. https://doi.org/10.1145/3404835.3463238

[9] Sean MacAvaney, Craig Macdonald, and Iadh Ounis. 2022. Reproducing Per-
sonalised Session Search Over the AOL Query Log. In Advances in Informa-
tion Retrieval - 44th European Conference on IR Research, ECIR 2022, Stavanger,
Norway, April 10-14, 2022, Proceedings, Part I (Lecture Notes in Computer Sci-
ence, Vol. 13185), Matthias Hagen, Suzan Verberne, Craig Macdonald, Christin
Seifert, Krisztian Balog, Kjetil Nørvåg, and Vinay Setty (Eds.). Springer, 627–640.
https://doi.org/10.1007/978-3-030-99736-6_42

[10] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In NIPS 2016. http://ceur-ws.org/Vol-1773/
CoCoNIPS_2016_paper9.pdf

[11] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query to
docTTTTTquery. Online preprint 6 (2019).

[12] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search.
In Proceedings of the 1st international conference on Scalable information systems.
1–es.

[13] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue
Simonsen, and Jian-Yun Nie. 2015. A Hierarchical Recurrent Encoder-Decoder
for Generative Context-Aware Query Suggestion. In CIKM 2015. ACM, 553–562.

[14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec, Canada, Zoubin Ghahra-
mani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-
berger (Eds.). 3104–3112. https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

[15] Mahtab Tamannaee, Hossein Fani, Fattane Zarrinkalam, Jamil Samouh, Samad
Paydar, and Ebrahim Bagheri. 2020. ReQue: A Configurable Workflow and
Dataset Collection for Query Refinement. In CIKM2020. ACM, 3165–3172. https:
//doi.org/10.1145/3340531.3412775

[16] Thanh Vu, Alistair Willis, Udo Kruschwitz, and Dawei Song. 2017. Personalised
Query Suggestion for Intranet Searchwith Temporal User Profiling. In Proceedings
of the 2017 Conference on Conference Human Information Interaction and Retrieval,
CHIIR 2017, Oslo, Norway, March 7-11, 2017, Ragnar Nordlie, Nils Pharo, Luanne
Freund, Birger Larsen, and Dan Russel (Eds.). ACM, 265–268. https://doi.org/10.
1145/3020165.3022129

[17] George Zerveas, Ruochen Zhang, Leila Kim, and Carsten Eickhoff. 2020.
Brown University at TREC Deep Learning 2019. CoRR abs/2009.04016 (2020).
arXiv:2009.04016 https://arxiv.org/abs/2009.04016

[18] Jianling Zhong, Weiwei Guo, Huiji Gao, and Bo Long. 2020. Personalized Query
Suggestions. In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps,
Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 1645–1648. https:
//doi.org/10.1145/3397271.3401331

5380

https://doi.org/10.1145/3459637.3482009
https://doi.org/10.1145/3477495.3531871
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.1145/1390334.1390400
https://doi.org/10.1145/1390334.1390400
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1007/978-3-030-99736-6_42
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1145/3340531.3412775
https://doi.org/10.1145/3340531.3412775
https://doi.org/10.1145/3020165.3022129
https://doi.org/10.1145/3020165.3022129
https://arxiv.org/abs/2009.04016
https://arxiv.org/abs/2009.04016
https://doi.org/10.1145/3397271.3401331
https://doi.org/10.1145/3397271.3401331

	Abstract
	1 Introduction
	2 System Overview
	2.1 Transformer Fine-Tuning [pair,finetune]
	2.2 Refined Query Prediction [predict]
	2.3 Performance Evaluation
	2.4 Gold-Standard Dataset Curation [agg]

	3 Case Study
	4 Benchmarks on RePair's datasets
	5 Conclusion and Future Work
	References

