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Abstract

Grooming minors for sexual exploitation
become an increasingly significant concern
in online conversation platforms. For a
safer online experience for minors, machine
learning models have been proposed to tap
into explicit textual remarks and automate
detecting predatory conversations. Such
models, however, fall short of real-world
applications for the sparse distribution of
predatory conversations. In this paper, we
propose backtranslation augmentation to
augment training datasets with more predatory
conversations. Through our experiments on 8
languages from 4 language families using 3
neural translators, we demonstrate that back-
translation augmentation improves models’
performance with less number of training
epochs for better classification efficacy. Our
code and experimental results are available at
github.com/fani-lab/Osprey/tree/coling25.

1 Introduction

An alarming problem in online conversation plat-
forms is the presence of minors before legal age
with little cognitive development and the preva-
lence of online grooming, where an adult sexual
predator initiates a sexual relationship with a minor
(victim) (Susi et al., 2019; Georgia M. Winters and
Jeglic, 2017). Further, online grooming is under-
reported for lack of awareness, support, or trust in
authorities, fear of retaliation from the predator or
legal repercussions, and distress of being judged or
blamed (Taylor and Gassner, 2010).

For a safer online experience, researchers
have proposed neural models, including feed-
forward (Villatoro-Tello et al., 2012; Escalante
et al., 2013; Cheong et al., 2015), convolu-
tional (Ebrahimi et al., 2016) and recurrent net-
works (Kim et al., 2020; Ngejane et al., 2021b),

*Warning: This paper discusses online grooming that may
be offensive or upsetting.

and transformers (Vogt et al., 2021; Agarwal et al.,
2021), to learn from explicit textual remarks of
predators for online grooming detection and help
warn minors, parents or police of such incidents
while preserving minors’ privacy. Such models,
however, suffer from low recall due to the sparse
distribution of predatory conversations; e.g., in
pan (Inches and Crestani, 2012) benchmark dataset,
merely 2.3% of conversations are predatory.

In this paper, we proposed to bridge the gap
by natural language backtranslation augmentation
to enrich training datasets with more predatory
conversations. Specifically, we translate original
predatory conversations from their original lan-
guage, e.g., english, to a target language, e.g.,
french, and then translate them back to the origi-
nal language using an off-the-shelf neural transla-
tor, e.g., meta’s nllb (Team et al., 2022), to gener-
ate new synthetic predatory conversations. While
languages share underlying commonalities, they
carry differences on the surface (Friederici, 2017),
especially in an informal context like in online con-
versations, that can be leveraged via backtransla-
tion to generate diverse paraphrases of a predatory
conversation while withholding its predatory intent.

From Table 1, backtranslation can uncover la-
tent terms in a predatory conversation as they may
not be commonly known in a target language and,
hence, should be explicitly generated through trans-
lation, like when ‘having it with minor’ is trans-
lated to french as ‘l’avoir avec mineur‘ followed
by a backtranslation to english, it brings up ‘hav-
ing sex’. Moreover, backtranslation can augment
context-aware synonymous terms from a target lan-
guage to the original predatory conversation, as
opposed to simple synonym replacement by a the-
saurus (Shiri, 2004). For instance, when ‘hooked
up’ is translated to chinese as ‘交过’, followed
by a backtranslation to english as ‘to have sex’, it
augments ‘sex’ as opposed to other semantics like

‘to plug in’ in electrical nomenclature. Finally, back-
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Table 1: Backtranslation examples of predatory messages from pan (Inches and Crestani, 2012).

original message (language) translation backtranslation
‘having it with minor’ (french) ‘l’avoir avec mineur’ ‘having sex with a minor’
‘i feel little aroused’ (deutsch) ‘ich fühle mich ein wenig erregt’ ‘i’m feeling a little turned on’
‘you ever hooked up with anybody...?’(chinese) ‘你有没有和网上的人交过?’ ‘have you ever had sex with ...?’
‘like two guys doing each other?’ (deutsch) ‘wie zwei typen, die es miteinander treiben?’‘like two guys having sex?’

translation can disambiguate polysemous colloca-
tions, like translating an ambiguous message ‘doing
each other’ to deutsch ‘miteinander treiben’, and
backtranslating to english, maps the term ‘each
other’ to ‘sex’;

For similar reasons, backtranslation has been em-
ployed in review analysis and opinion mining (Fei
et al., 2021; Liesting et al., 2021; Hemmatizadeh
et al., 2023) and other natural language process-
ing tasks like text summarization (Fabbri et al.,
2021) and question-answering (Bhaisaheb et al.,
2023), and machine translation (Guo et al., 2021;
Sennrich et al., 2016). Furthermore, the open-
source accessibility to neural translators (Team
et al., 2022), capable of delivering high-quality
translations between many languages, as well as
their seamless integration into any pipeline with
few lines of code, have already set off a surge of
interest. Nonetheless, other augmentation tech-
niques such as rule-based (Wei and Zou, 2019),
synonym replacement (Kolomiyets et al., 2011),
and structure-based (Min et al., 2020) fall short in
online grooming detection due to the short, noisy
and informal messages.

2 Problem Definition

A conversation c in a language l is a sequence of
|c| timestamped messages mc

i ; 1 < i < |c|, each
message of which includes id, text, author, and
timestamp. Furthermore, as opposed to an online
post or comment, an online conversation should
have at least two different authors, each of whom
has at least one message, i.e., ∃mc

i ,m
c
j , i ̸= j such

that mc
i .author ̸= mc

j .author. Let C = {c} be the
set of conversations, our task is to learn fθ : C →
{0 : normal, 1 : predatory}, a mapping function
of parameters θ from the conversation set to the
Boolean set, such that fθ(c) = 1 if c is predatory
and 0 otherwise.

3 Backtranslation Augmentation

We learn the mapping function fθ from a set of con-
versations C+ = C ∪ Cl that is augmented by back-
translated versions of predatory conversations via a

language l. Let L be the set of natural languages, τ
be a two-way translator, and c be a predatory con-
versation. We forward translate each message of
the predatory conversation mc

i to a target language
l and translate it back to the source language us-
ing the translator τ , resulting in the backtranslated
version of each message, denoted by mc←l

i . We
collect the backtranslated messages and form a new
predatory conversation c←l as the backtranslated
version of c, withholding the same values in other
attributes like timestamp and author. Finally, we
augment the dataset with backtranslated versions
of existing conversations.

4 Experiments

4.1 Dataset

Access to training sets of online conversations re-
mains challenging due to privacy and legal con-
cerns. Previous datasets such as conversations from
an online game for minors (Cheong et al., 2015),
chat-coder (McGhee et al., 2011), and pan-chat-
coder (Vogt et al., 2021), are inaccessible to re-
searchers. The sole accessible benchmark dataset
in the literature is pan (Inches and Crestani, 2012)
(Appendix B), which extensively used in prior stud-
ies (McGhee et al., 2011; Bogdanova et al., 2012;
Ebrahimi et al., 2016; Cardei and Rebedea, 2017;
Aragón and López-Monroy, 2018). In our experi-
ments, we removed conversations with only 1 par-
ticipant or those with fewer than 6 message ex-
changes.

4.2 Backtranslation

We chose french, deutsch, icelandic, and
catalan from indo-european, farsi and pashto
from iranic, and chinese and myanmarese from
sino-tibetan, among which icelandic, catalan,
pashto, and myanmarese are low-resource lan-
guages. For translation and backtranslation, we
utilized three two-way neural translators: meta’s
nllb (Team et al., 2022) and m2m100 (Fan et al.,
2021), and google’s translator. These translators
can perform translations to and from over 100 lan-
guages with a single model, enabling us to con-
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Figure 1: Training efficiency vs. inference efficacy. Baselines converge faster in the first 10 epochs on the augmented
dataset (colored lines) for better f-measures on the test set compared to the lack thereof (black line). As seen in
Appendix D, m2m100 follows the same trend.

duct a comprehensive study on a wide variety of
languages. All three translators are based on trans-
formers. However, while meta’s translators are
open-sourced, google’s translator is closed, yet it
is a well-known commercial translator. In terms of
translation quality, nllb is the state-of-the-art on
benchmark translation datasets (Team et al., 2022).

4.3 Baselines

We trained state-of-the-art recurrent model by
Waezi et al. (2024)(gru), and the strong competi-
tor by Kim et al. (2020)(lstm), to estimate fθ for
online grooming detection on the backtranslated
augmented dataset and lack thereof. Both models
have a single layer with 512 units, utilizing the
tanh activation function and the Adam optimizer.
Each conversation was vectorized as a sequence
of its message embeddings using pretrained 768-
dimensional vectors of distilroberta (Sanh et al.,
2019).

4.4 Evaluation Methodology

We performed 3-fold cross-validation. For each
fold, we conducted two separate training sessions
for a baseline model: one using the original fold
and one using the augmented one. We evaluated
the performance of the trained models on the same
test set using f-measures with β = 2.0 to favour
recall over precision vs. β = 0.5 vice versa,
and β = 1.0 for equal importance. Finally, we
compared the average results over the folds. To
study how backtranslation augmentation improves
models’ efficiency during training, we reported the
models’ performance on the test set at each training
epoch.

4.5 Results

From Figure 1, we observe that baselines converge
faster during less number of training epochs when
the training set is augmented with backtranslations
across different languages compared to the lack
thereof in terms of f-measures. In terms of efficacy,
Table 2 shows the performance delta before and af-
ter backtranslation augmentation of the training set
for baselines after 20 epochs. As seen, backtransla-
tion augmentation helps with the models’ efficacy
overall. However, the performance gain depends
on the language, translator, and baseline model.

Regarding the effects of each language, language
families, and their combinations on the baselines’
efficacy, we observe that low-resource languages
individually have shown an overall better perfor-
mance like catalan (ca), pashto (pa), and
myanmarese (my), which can be attributed to their
better paraphrasing (Appendix C). Low-resource
languages have shown relatively higher seman-
tic similarities for the relatively low bleu scores.
In contrast, chinese, a high-resource language,
yielded a lower performance in Table 2 due to its
poor backtranslations with the lowest bleu and se-
mantic similarities. From the results of integrating
the backtranslations from languages of the same
family, we observe that not all language families
show synergy. While integrating backtranslations
of french (fr) + catalan (ca) from the western
romance family boost the baselines’ performance,
chinese (zh) + myanmarese (my) from the sino-
tibetan have a discounting effect. However, when
we integrate more languages based on their high
or low-resource richness, or integrating all lan-
guages, backtranslation augmentation shows posi-
tive impacts in general.



Table 2: Average 3-fold cross-validation results of baselines for 20 training epochs using backtranslation augmenta-
tions and lack thereof (none) on the same test set based on the performance delta (∆). Best viewed in color. Actual
values of the metrics are in Appendix D, also in our codebase.

∆f0.5 ∆f1 ∆f2
google m2m100 nllb google m2m100 nllb google m2m100 nllb

gr
u

none 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+fr +8.76 +2.61 +2.65 +7.08 +2.84 +2.63 +5.80 +2.46 +3.35
+fa +1.68 +3.50 +4.05 +1.88 +3.64 +3.39 +2.43 +5.42 +3.04
+de +4.10 +3.81 +9.00 +3.76 +2.97 +6.39 +4.22 +2.92 +2.27
+zh -8.97 +1.55 +5.63 -5.87 +2.14 +4.27 -3.92 +4.89 +2.61
+ca +7.29 +7.44 +11.03 +6.73 +5.40 +8.04 +5.01 +2.67 +4.70
+ps 9.57 -5.32 +13.60 +6.48 -3.79 +7.58 +3.04 +1.56 +0.52
+is +3.73 -2.24 +10.14 +4.04 -0.68 +6.98 +6.27 +2.25 +3.24
+my +12.51 -3.13 +9.34 +9.13 -1.66 +6.06 +4.63 +1.46 +2.00
+fr+ca western romance +8.07 -4.40 +15.29 +7.02 -2.35 +9.94 +6.76 -0.81 +3.52
+fa+ps iranic -3.31 -6.71 +2.91 -1.88 -4.75 +2.62 +0.34 +0.78 +3.60
+de+is west germanic +11.84 +5.94 9.43 +9.39 +5.60 +7.65 +6.98 +6.63 +6.16
+zh+my sino-tibetan +8.83 -8.76 -3.15 +6.80 -6.33 -1.21 +4.55 -7.05 +0.66
+fr+fa+de+zh high-resource +5.88 -1.36 10.14 +4.62 -0.40 +7.63 +3.94 +3.01 +4.97
+ca+ps+is+my low-resource +8.10 -1.38 +10.41 +6.61 -0.52 +5.26 +5.63 +2.64 -1.00
all +4.25 -0.32 +6.51 +4.30 +0.06 +5.20 +6.02 +2.16 +4.64

ls
tm

none 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+fr +8.42 -2.78 +5.30 +1.79 -2.10 +2.55 -6.71 -2.64 -1.43
+fa +1.99 +4.06 -6.82 -0.03 +0.65 -5.59 -3.53 -4.19 -7.95
+de +2.14 +4.16 -0.58 +1.78 -0.17 -0.70 +1.21 -5.75 -3.90
+zh +5.80 +2.04 -6.30 -0.02 -0.40 -2.66 -7.02 -4.87 -13.18
+ca -2.09 +2.83 +8.03 -0.74 -0.08 +1.97 +0.69 -5.70 -5.46
+ps -9.05 +4.32 +1.68 -7.05 +2.06 -1.89 -6.36 -0.82 -9.89
+is +1.83 -10.86 +6.64 +1.66 -8.07 +1.10 -2.03 -3.81 -6.26
+my -3.94 +0.28 +8.86 -3.15 -2.63 +4.52 -7.74 -6.91 -0.87
+fr+ca western romance 0.08 -12.39 +0.96 -0.67 -8.89 -1.16 -2.02 -4.14 -4.55
+fa+ps iranic +8.68 -11.79 +2.90 +2.38 -8.87 -0.33 -5.59 -4.43 -6.13
+de+is western germanic -13.23 -0.62 +1.70 -9.32 -0.97 -0.18 -8.14 -2.33 -3.62
+zh+my sino-tibetan -1.32 +4.27 +0.57 -0.04 +0.52 -2.88 +0.91 -4.26 -9.11
+fr+fa+de+zh high-resource +1.44 -8.80 +9.38 -1.60 -6.98 +2.91 -5.55 -8.82 -5.00
+ca+ps+is+my low-resource -11.90 +0.56 +7.01 -8.57 -1.17 +1.67 -4.89 -3.87 -5.78
all +3.24 +3.28 +4.54 +0.69 -0.17 +1.51 -2.85 -4.60 -3.39

For the quality of neural translators on the per-
formance gain, from Table 2, we see that the trans-
lation by nllb and google have resulted in the best
and runner-up performance improvements, respec-
tively, while m2m100 has shown less effectiveness.
Specifically, in low-resource languages, m2m100’s
backtranslations have shown subpar performance
compared to nllb and google. Our results are also
aligned with translation benchmarks, and the fact
that nllb has been developed with low-resource
languages in mind (Team et al., 2022).

To see whether backtranslation augmentation
consistently benefits the performance of the base-
line models, we clearly observe that gru’s per-
formance improvement has been positive overall
across different languages and metrics. Surpris-
ingly, lstm’s performance is not following a similar
trend; while lstm’s f0.5 has been improved across
high-resource languages, its performance drops in

other languages for f1 and f2. Our results are in
line with Waezi et al. (2024)’s work where gru out-
performed lstm due to its better gating strategy to
retain dependencies from earlier messages in long
conversations as in predatory conversations.

5 Concluding Remarks

In this paper, we proposed backtranslation augmen-
tation of predatory conversations for online groom-
ing detection. We showed that (1) backtranslation
augmentation improves models’ performance with
less number of training epochs for better classifi-
cation efficacy; (2) low-resource languages have
shown better performance; (3) higher quality neu-
ral translators yield more performance gain; and (4)
finally, the underlying model architecture matters
where gru consistently improves upon backtransla-
tion augmentation across all languages while lstm
improves only across high-resource languages.



6 Limitations

The main limitation of this study lies in the bench-
mark dataset, pan, which is solely in English. This
restricts the generalizability of our findings to other
languages. We acknowledge that online groom-
ing occurs across other languages, highlighting the
critical need for non-English training datasets. Ex-
panding research to include multilingual datasets
would allow for a more comprehensive evaluation
of online grooming detection techniques, including
the effectiveness of our backtranslation augmenta-
tion. Additionally, the victims in pan are trained
adult decoys rather than actual minors, which may
affect the quality and reliability of results. Finally,
while the ultimate objective of online grooming de-
tection is to identify predators before they can harm
potential victims, our study requires the entire con-
versation for classification. In future work, we plan
to focus on the task of early detection, that is, iden-
tifying grooming behaviors at initial or early stages
based on the first few messages before the conver-
sation escalates into more serious exploitation or
abuse.

7 Ethical Considerations

The researchers involved in this study were all
adults who were warned and fully informed about
the harmful content of predatory conversations in
the benchmark dataset. Additionally, they under-
went appropriate training to ensure they were pre-
pared and would not experience any mental distress
during the course of the research.
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A Related Works

The related works to this paper are largely centred
around two areas: (1) online grooming detection
and (2) data augmentation. We acknowledge re-
search directions for online grooming from a non-
computational perspective in psychology (Chiu and
Quayle, 2022; Schoeps et al., 2020), behavioral
studies (Ringenberg et al., 2022; Broome et al.,
2020), and forensics (Ngejane et al., 2021a). While
such studies help with developing computational
models, we exclude them for being beyond the
scope of this paper.

A.1 Online Grooming Detection
The primary means of online grooming is textual
messages. Hence, natural language processing
techniques have been widely used to detect on-
line grooming through machine learning classifiers
on vector representations of conversations, which
can be categorized into i) sparse vector representa-
tion, ii) low-dimensional dense vector representa-
tions, and iii) hand-crafted feature representations
from conversations. Initially, sparse vector rep-
resentations for conversations have been widely
used, like one-hot vectors for each word or mes-
sage or bag-of-words representations (Villatoro-
Tello et al., 2012; Escalante et al., 2013; Cheong
et al., 2015; Ebrahimi et al., 2016). For instance,
Villatoro-Tello et al. (Villatoro-Tello et al., 2012)
used bag-of-words of raw messages without text
preprocessing to capture the characteristics of on-
line chats, including misspellings and emoticons.
Ebrahimi et al. (Ebrahimi et al., 2016) employed
concatenation of one-hot vectors for each message
to preserve token order, resulting in marginal im-
provements over bag-of-words but at the cost of
increased dimensionality in sparse vectors. De-
spite their simplicity, sparse representations are al-
ready known to suffer from out-of-vocabulary, loss
of token order, and high dimensionality, to name
a few. Next, pretrained word embeddings from

word2vec (Mikolov et al., 2013) and glove (Pen-
nington et al., 2014) have been employed, follow-
ing their success in various nlp tasks like docu-
ment classification (Ebrahimi et al., 2016; Muñoz
et al., 2020). Such embeddings, however, per-
formed poorly for being trained on corpora dif-
ferent from informal online chats. State-of-the-
art methods use contextualized word embeddings
for online grooming (Waezi et al., 2024; Vogt
et al., 2021; Chehbouni et al., 2022). Chehbouni
et al. (Chehbouni et al., 2022) used pretrained
bert model to encode each message into embed-
dings for a logistic regression classifier. Kim et
al. (Kim et al., 2020) employed universal sentence
encoders (Cer et al., 2018) to encode each message
as a single dense vector. More recently, Waezi et
al. (Waezi et al., 2024) proposed to incorporate con-
versational features, such as the message’s times-
tamp and the number of participants, to capture
characteristic features of online grooming.

In terms of classifiers, earlier works such as
Villatoro-Tello et al. (Villatoro-Tello et al., 2012)
and others used support vector machines (Bours
and Kulsrud, 2019; Villatoro-Tello et al., 2012; Es-
calante et al., 2013; Cheong et al., 2015) and lo-
gistic regression (Chehbouni et al., 2022; Cheong
et al., 2015). Other classical machine learn-
ing models have also been employed, includ-
ing k-nearest neighbors (Chehbouni et al., 2022),
naive Bayes (Bogdanova et al., 2012), decision
trees (McGhee et al., 2011; Cheong et al., 2015),
and feedforward neural networks (Villatoro-Tello
et al., 2012; Escalante et al., 2013; Cheong et al.,
2015). Recent works have increasingly adopted
neural models, including convolutional neural net-
works (Ebrahimi et al., 2016), recurrent neural net-
works (Waezi et al., 2024; Ngejane et al., 2021a),
and transformer-based models (Vogt et al., 2021),
which enable considering larger or even the entire
context of a conversation for classification. For
example, Kim et al. (Kim et al., 2020) used lstm
to learn from conversations as sequences of words,
in contrast to a single document and bag of words.
Similarly, Waezi et al. (Waezi et al., 2024) pro-
cessed conversations as sequences of messages but
using gru, showing gru has a better gating strategy
versus lstm for predatory conversations, which are
often long.

Nonetheless, despite well-established data aug-
mentation techniques in nlp, no work has been
proposed to address the highly sparse distribution
of predatory conversations in training datasets, to

https://openreview.net/forum?id=B14TlG-RW
https://openreview.net/forum?id=B14TlG-RW


Table 3: Details of neural translators.

google m2m100 nllb
#languages 133 101 196
model card ✕ ✓ ✓
#parameters unknown 1.2 billion 3.3 billion
license closed source mit cc-by-nc
owner google meta meta
architecture transformer transformers transformers

+rnn

Table 4: Languages used in this paper.

resource language family

high

(en) english west germanic
(fr) french western romance
(fa) farsi iranic
(de) deutsch west germanic
(zh) chinese sino-tibetan

low

(ca) catalan western romance
(ps) pashto iranic
(is) icelandic west germanic
(my) myanmarese sino-tibetan

the best of our knowledge. In this paper, we are
the first to bridge the gap and undertake a data aug-
mentation method via backtranslation to enhance
online grooming detection.

A.2 Data Augmentation

Augmentation techniques have helped models’ ro-
bustness and generalization for out-of-vocabulary
and out-of-distribution scenarios during inference
on unseen text, which can be categorized based
on where augmentation happens in the machine
learning pipeline (Bayer et al., 2023): (1) data
space, which involves augmenting pieces of text
directly in levels of character, word, phrase, and
sentence, and (2) feature space, where the vec-
tor representations (embeddings) of input texts
in a latent space are used to augment new data
by, e.g., introducing noise to a vector or inter-
polating new vectors from existing ones (Kumar
et al., 2019; Chen et al., 2020). In contrast to fea-
ture space augmentation, where the augmented
vectors are not interpretable for humans (Boluk-
basi et al., 2021) and their generation is often
computationally costly, data space augmentations
are simpler yet more effective and include noise
addition (Belinkov and Bisk, 2018), rule-based
transformations (Coulombe, 2018), synonym re-
placement (Kolomiyets et al., 2011), structure-
based manipulation (Min et al., 2020), machine-
generated text (Qiu et al., 2020), and backtransla-
tion (Hemmatizadeh et al., 2023; Risch and Krestel,
2018). For example, for the purpose of online text
classification, Risch and Krestel (Risch and Kres-
tel, 2018) utilized backtranslation to enhance the
detection of online aggression and bullying, while
Rizos et al. (Rizos et al., 2019) employed synonym
substitution for hate speech detection. Additionally,
Cao and Lee (Cao and Lee, 2020) and Casula and
Tonelli (Casula and Tonelli, 2023) used machine-
generated text to augment datasets of hate speech
detection and offensive language detection, respec-

tively.
Among data space augmentation methods, back-

translation has been notably used (Aroyehun and
Gelbukh, 2018; Qu et al., 2021; Xie et al., 2020)
due to its ability to create new paraphrases of an
existing text with new vocabulary and structure
while controlling the meaning and semantic context.
Moreover, the open-source accessibility to two-way
multilingual neural translators with high-quality
translations between many languages, including
low-resource ones, as well as their easy integration
into any pipeline led to the growing interest in back-
translation augmentation. McNamee and Duh (Mc-
Namee and Duh, 2023) and others (Hemmatizadeh
et al., 2023; Aroyehun and Gelbukh, 2018; Liest-
ing et al., 2021) showed that backtranslation could
significantly improve the translation task itself for
languages with moderate and low resources. It also
enhances the fluency (Edunov et al., 2019; Sennrich
et al., 2016), reduces overfitting, and improves ro-
bustness (Sajjadi et al., 2016). For instance, Xie
et al. (Xie et al., 2020) integrated backtranslation
as part of consistency training1, making translator
models invariant to noise or minor changes, thus
enhancing robustness (Xie et al., 2020). Backtrans-
lation has also been used in squad benchmark (Yu
et al., 2018), tweet classification (Kruspe et al.,
2018), image captioning (Turkerud and Mengshoel,
2021), aspect-based sentiment analysis (Liesting
et al., 2021; Hemmatizadeh et al., 2023), and in
domains close but different from online grooming,
like aggression (Aroyehun and Gelbukh, 2018) and
offensive language (Ibrahim et al., 2020) detection.

However, in online grooming, where turn-taking
conversations are involved as opposed to an online
post or comment, the effect of data augmentation,
in general, and backtranslation augmentation, in

1Consistency training involves perturbations to input text
for semi-supervised learning where labeled data are scarce
and robustness to adversarial attacks is required. (Sajjadi et al.,
2016)



Table 5: Statistics of pan (Inches and Crestani, 2012) dataset.

raw filtered
train test train test

#conversations 66,927 155,128 16,529 38,246
#predatory conversations 2,016 3,737 957 1,698
#conversations w/ single participant 12,773 29,561 0 0
#predatory conversations w/ 2+ participants 0 0 0 0
avg #msgs in a predatory conversations 60.73 90.07 80.68 71.48
avg #msgs in a normal conversations 12.74 12.86 41.73 41.78
avg #words in a msg of a predatory conversations 4.47 4.63 4.38 4.51
avg #words in a msg of a normal conversations 6.39 6.77 6.91 7.16
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Figure 2: bleu and semantic similarity (declutr) of
backtranslated messages against the original ones.

particular, is yet to be studied. This paper is a pi-
oneering effort to utilize backtranslation as a data
augmentation strategy to improve online grooming
detection, esp., when training datasets are inher-
ently extremely imbalanced.

B Dataset

The pan dataset includes cases of online grooming
about 10 years obtained from trained volunteers
(decoys) posing as minors in public conversation
platforms to catch and convict predators. The nor-
mal conversations in this dataset are sourced from
omegle online chatrooms2 and internet relay chat
logs3. It also includes conversations with a sin-
gle participant and a small number of messages.
We filter such conversations and those with less
than 6 messages. Table 5 shows the statistics of
the datasets before and after filtering. As seen, the
dataset is extremely imbalanced against predatory
conversations, which include only 2 participants
and are generally longer.

2omegle.inportb.com
3irclog.org and krijnhoetmer.nl/irc-logs

0 5 10 15
gru
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Figure 3: Training efficiency vs. inference efficacy for
m2m100. Baselines converge faster in the first 10 epochs
on the augmented dataset (colored lines) for better f-
measures on the test set compared to the lack thereof
(black line), which is a similar trend as in nllb and
google.

C Effective Backtranslation for
Augmentation

Table 3 summarizes the neural translators used in
this paper, where google is closed-source yet a
well-known commercial translator, widely used by
the general public, industry, and academia (Patil
and Davies, 2014; Yu et al., 2018; Madisetty and
Desarkar, 2018), and m2m100 and nllb are open-
source from meta. We presume backtranslation is
effective for augmentation if it paraphrases the orig-
inal predatory messages of a conversation into new
wordings while withholding the semantic context
of grooming. We opt for bleu to measure the n-
gram overlap in wordings between the original and
backtranslated messages. Meanwhile, we measure
the semantic similarity between the original and
backtranslated messages by declutr as the state-
of-the-art model-based method (Giorgi et al., 2021),
which calculates the semantic similarity of a pair
of texts based on their cosine similarity in a vector
space. From Figure 2, the semantic similarity of
most backtranslations (paraphrases) to the original

omegle.inportb.com
irclog.org


Table 6: Average 3-fold cross-validation results of baselines for 20 training epochs using backtranslation augmenta-
tions and lack thereof (none) on the same test set.

f0.5 f1 f2
google m2m100 nllb google m2m100 nllb google m2m100 nllb

gr
u

none 50.95 50.95 50.95 59.03 59.03 59.03 68.15 68.15 68.15
+fr 59.72 53.56 53.61 66.11 61.87 61.66 73.96 70.62 71.51
+fa 52.63 54.45 55.01 60.91 62.68 62.42 70.59 73.58 71.20
+de 55.05 54.77 59.96 62.79 62.00 65.42 72.38 71.07 70.42
+zh 41.99 52.50 56.59 53.17 61.17 63.30 64.24 73.05 70.77
+ca 58.24 58.40 61.99 65.76 64.44 67.07 73.17 70.83 72.85
+ps 60.53 45.63 64.55 65.51 55.24 66.61 71.20 69.72 68.68
+is 54.68 48.72 61.09 63.07 58.36 66.01 74.42 70.41 71.40
+my 63.46 47.82 60.30 68.16 57.38 65.09 72.79 69.62 70.16
+fr+ca west romance 59.03 46.55 66.25 66.05 56.68 68.97 74.92 67.35 71.68
+fa+ps iranic 47.65 44.24 53.87 57.15 54.28 61.65 68.50 68.93 71.76
+de+is western germanic 62.80 56.90 60.38 68.43 64.64 66.68 75.14 74.79 74.32
+zh+my sino-tibetan 59.79 42.20 47.81 65.83 52.70 57.82 72.70 61.10 68.82
+fr+fa+de+zh high-resource 56.83 49.59 61.09 63.65 58.63 66.66 72.10 71.17 73.13
+ca+ps+is+my low-resource 59.05 49.58 61.37 65.64 58.51 64.29 73.79 70.80 67.16
all 55.20 50.64 57.47 63.33 59.09 64.23 74.18 70.32 72.80

ls
tm

none 58.39 58.39 58.39 64.51 64.51 64.51 71.76 71.76 71.76
+fr 66.82 55.62 63.70 66.31 62.42 67.07 65.06 69.12 70.33
+fa 60.39 62.46 51.57 64.49 65.17 58.93 68.23 67.57 63.81
+de 60.53 62.56 57.82 66.30 64.35 63.82 72.97 66.01 67.86
+zh 64.19 60.44 52.10 64.50 64.11 61.86 64.74 66.89 58.59
+ca 56.30 61.23 66.43 63.78 64.44 66.49 72.46 66.06 66.31
+ps 49.35 62.72 60.08 57.47 66.58 62.63 65.40 70.94 61.88
+is 60.23 47.54 65.03 66.18 56.45 65.61 69.74 67.95 65.50
+my 54.46 58.68 67.25 61.36 61.89 69.03 64.02 64.86 70.89
+fr+ca west romance 58.48 46.00 59.36 63.85 55.63 63.36 69.74 67.62 67.21
+fa+ps iranic 67.08 46.61 61.29 66.90 55.65 64.19 66.17 67.34 65.63
+de+is western-germanic 45.17 57.78 60.10 55.19 63.55 64.34 63.62 69.43 68.14
+zh+my sino-tibetan 57.08 62.67 58.97 64.48 65.04 61.64 72.67 67.50 62.65
+fr+fa+de+zh high-resource 59.83 49.60 67.78 62.92 57.54 67.42 66.22 62.94 66.76
+ca+ps+is+my low-resource 46.50 58.96 65.41 55.95 63.35 66.19 66.87 67.89 65.98
all 61.64 61.68 62.94 65.21 64.35 66.02 68.91 67.17 68.37

text typically falls between 40% and approximately
95%, indicating that, on average, the backtransla-
tions retain the grooming intent of the conversa-
tions. Meanwhile, the bleu scores exhibit a lower
range of values, indicating that word choices differ,
which, together with semantic similarity, suggests
a high-quality backtransaltion for augmentation.
Conversely, a higher bleu implies that the original
text and the paraphrase are very similar in terms of
word usage and could even be identical, yielding
poor backtranslation for augmentation.

D Complementary Results

Figure 3 shows the trade-offs between the training
efficiency and inference efficacy for baselines when
the dataset is augmented with backtranslations us-
ing m2m100. As seen, a similar trend is followed
as in other translators, including nllb and google
(Figure 1). Furthermore, Table 6 shows the values
of metrics for the baselines whose delta (∆) were
presented in Table 2.
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