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Abstract
Neural team recommendation has achieved state-of-the-art perfor-
mance in forming teams of experts whose success in completing
complex tasks is almost surely guaranteed. The proposed models
frame the problem as a Boolean multilabel classification, mapping
the dense vector representations of required skills to the sparse
occurrence (multi-hot) vector representation of an optimum sub-
set of experts using multilayer feedforward neural networks. Such
approaches, however, suffer from the curse of sparsity in the high-
dimensional vector of optimum experts in the output layer. In this
paper, we propose to reformulate the team recommendation prob-
lem into a sequence prediction task and leverage seq-to-seq models,
including transformers, to map an input sequence of the required
subset of skills onto an output sequence of the optimum subset of
experts. Our experiments on four large-scale datasets from various
domains, with distinct distributions of skills in teams, show that
the seq-to-seq approach is consistently superior overall in a host
of classification and information retrieval metrics. Our codebase is
available at https://github.com/fani-lab/OpeNTF/tree/nmt.

CCS Concepts
• Information systems → Recommender systems; • Human-
centered computing→ Social recommendation; • Computing
methodologies→ Neural networks.
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1 Introduction
As modern projects have been surpassing the capacity of individ-
uals, collaborative teams of experts have become vital in today’s
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Figure 1:Multilabel[43] vs. seq-to-seq team recommendation.
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Figure 2: Distribution of teams over experts (left) and skills
(right) for dblp, uspt, imdb, and gith datasets.

diverse landscape across academia [25, 47, 61], industry [1, 13, 27],
law [4, 24], freelancing [18], and healthcare [48, 50], and the suc-
cess of projects hinges on the effectiveness of teams. Assembling
an effective team can be seen as social information retrieval (So-
cial IR), where the right group of experts, rather than relevant
information, is desired to accomplish a task at hand [22, 23]; a te-
dious, error-prone, and suboptimal process should it be manual,
as it is predisposed to hidden personal and societal biases [40],
falls short for an overwhelming number of experts, and fails to
consider a multitude of criteria to optimize simultaneously [2].
Therefore, a rich body of computational methods, from opera-
tions research [3, 12, 15, 28, 52, 58, 59, 64] social network anal-
ysis [19, 31, 51] and more recently, machine learning [6, 16, 42, 44],
have been proposed for team recommendation, also known as team
allocation, team selection, team composition, and team configu-
ration. Among such methods, neural models have brought state-
of-the-art efficacy and efficiency due to the iterative and online
learning procedure, and availability of training datasets.

By and large, proposed neural models frame the team recommen-
dation problem as a multilabel Boolean classification task, learning
the distributions of experts and their skill sets in the context of
teams in the past to draw a subset of experts whose history of
collaborations is statistically more likely successful. As seen in
Figure 1 (left), they map a dense low-dimensional vector representa-
tion (embedding) of a required subset of skills onto the output layer,
which is an occurrence (multi-hot) vector representation of a suc-
cessful (optimum) team. In the output layer, each expert is mapped
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to a label and would be recommended if their class’s prediction
probability is close to 1 [42, 43]. Such models, however, suffer from
the curse of sparsity in the output layer. Due to the large number
of labels (experts), neural classifiers, which learn their parameters
based on average loss values over all labels, may underfit as the
average loss becomes near 0 over a very large number of experts.
While researchers have tried weighted cross-entropy [44] and neg-
ative sampling heuristics [6] to fill the gap, such models still suffer
from the lack of sufficient efficacy.

In this paper, unlike existing approaches, which first learn skill
embeddings and then transfer them to a neural multilabel classi-
fier, we propose to reformulate the problem into an end-to-end
sequence prediction task between pairs of ⟨sequence of required
skills → sequence of optimum experts⟩ and employ recurrent and
transformer-based seq-to-seq neural models, as seen in Figure 1
(right).

Seq-to-seq approaches have gained significant traction for their
efficacy not only in natural language tasks, but also in recommen-
dation systems for sequence modelling like transformer4rec [9],
sas-rec [30], and bert4rec [53]. However, despite the similarity,
applying the seq-to-seq approach for team recommendation with-
holds its own unique challenges: (1) training datasets have their
own unique skill and expert sets, and therefore, the pretaining or
finetuning approach, which is successful for tasks like product rec-
ommendation, has limited applications for team recommendations;
(2) Moreover, a team recommender works with two distinct sets of
skills and experts where their distributions over teams are highly
domain-dependent. As seen in Figure 2 (left), the distributions of
teams over experts in all datasets are long-tailed as many experts
(researchers in dblp, developers in gith, inventors in uspt, and
cast and crew in imdb) have participated in very few teams (papers
in dblp, software repositories in gith, patents in uspt, and movies
in imdb). However, with respect to the set of skills, while dblp and
uspt suffer further from the long-tailed distribution of skills in
teams, gith and imdb follow a more fair distribution, as shown
in Figure 2 (right). Specifically, gith and imdb have a limited vari-
ety of skills (programming languages in gith and genres in imdb),
which are employed by many teams. To our knowledge, no work
has explored the seq-to-seq approach for the team recommendation
task in the context of such challenges before our study.

2 Related Works
On the one hand, there has been extensive work on seq-to-seq mod-
els and transformers for sequential recommendation systems [30,
53, 55, 63]. Hidasi et al. [20] were among the first to apply recurrent
neural networks for sequence-based recommendations, stacking
gru units with learning-to-rank losses to leverage user-item se-
quences where collaborative filtering fails. Similarly, Wu et al. [60]
used lstm with softmax loss to capture temporal patterns. Tang
et al. [55] applied convolution layers to produce effective user em-
beddings while addressing efficiency and scalability [30, 55]. A
breakthrough came with Kang et al. [30] introducing sas-rec, a
transformer-based model with left-to-right self-attention and point-
wise ranking loss. Later, Sun et al. [53] proposed bert4rec, em-
ploying bidirectional self-attention with a point-wise ranking loss

on item sequences. These transformers are now optimized and re-
leased by nvidia’s transformers4rec [8, 9, 21, 30, 53] for product
recommendations at scale. Despite extensive research and industrial
successes of sequence modelling for user-item recommendation, its
application for team recommendation is yet to be studied, and to
our knowledge, we are the first to bridge this gap.

On the other hand, team recommendation has long attracted
both social and computer science researchers whose proposed ap-
proaches can be categorized as: (1) search-based methods using
operation research methods [3, 12, 15, 28, 52, 58, 59, 64] or ex-
pert network analysis [19, 31, 51], (2) reinforcement-based meth-
ods [14, 38, 65], and (3) learning-based methods [16, 33, 42–44, 49].
While search- and reinforcement-based techniques are theoretically
sound, they often struggle with scalability, making learning-based
approaches preferable. Within the learning-based category, simple
feedforward networks [44] were used initially, which were later
improved with variational Bayesian networks [7, 43, 44] to address
popularity bias via Gaussian uncertainty. Dashti et al. [6] further
enhanced performance by using negative sampling to mitigate the
dominance of popular experts. However, these methods assume in-
dependent expert selection, overlooking team dynamics. To capture
collaborative relationships, graph neural network-based methods
emerged. Rad et al. [42] incorporated expert collaboration graphs
with metapath2vec [11] for skill embeddings, and Kaw et al. [33]
used deep graph infomax [57] with graph convolution networks
with attention layers to improve upon skill embeddings. Despite
these advances, current neural methods treat team recommenda-
tion as a multilabel classification problem, assuming experts can be
selected independently, and hence fail to capture real-world team
dynamics. Moreover, such models rely on high-dimensional multi-
hot output representations for experts, leading to computational
inefficiencies for a large pool of experts.

3 Problem Definition
Given a set of skills S = {𝑠𝑖 } and a set of experts E = {𝑒 𝑗 }, a team
is a tuple (s, e) where an ordered list of experts e ⊆ E collectively
cover an ordered list of required skills s ⊆ S to accomplish a task
at hand. Further, T = {(s, e)𝑘 } indexes all instances of successful
teams. For a given set of skills s, the team recommendation problem
aims at identifying an optimal subset of experts e such that their
collaboration in the predicted team is successful. More concretely,
the team recommendation problem is to learn a mapping function
𝑓 of parameters 𝜽 such that ∀(s, e) ∈ T ; 𝑓𝜽 (s) = e.

4 Proposed Approach
We propose to transform the team recommendation task into a seq-
to-seq modelling task, mapping a dynamic-length input sequence of
required skills onto a dynamic-length output sequence of predicted
experts while leveraging the autoregression and global attention
mechanisms, which capture dependencies beyond independent ex-
pert probabilities in multilabel classification.

We estimate 𝑓𝜃 (s) on a parallel dataset whose pairs of sequences
are pairs of (s, e) ∈ T , transforming the ordered list of required
skills s = [𝑠𝑖1 , . . . , 𝑠𝑖𝑛 ] into an optimum ordered list of experts
e = [𝑒 𝑗1 , . . . , 𝑒 𝑗𝑚 ]. We then employ a seq-to-seq encoder-decoder
neural architecture [5, 26, 29, 41, 54] to maximize the conditional



Table 1: Statistics of the raw and preprocessed datasets.
dblp uspt imdb gith

teams T publications patents movies software repos
experts E authors inventors cast & crew developers
skills S keywords subclasses (sub) genres prog. lang.
success published issued produced released
statistics raw prep. raw prep. raw prep. raw prep.
| T | 4.9M 99K 7.1M 152K 507K 32K 133K 46K
| E | 5.0M 14K 3.5M 13K 877K 2.0K 453K 1.2K
|S | 90K 30K 242K 67K 28 23 20 20
#teams w/ one expert 769K 0 2.6M 0 323K 0 0 0
avg. #experts/team 3.06 3.29 2.51 3.79 1.88 3.98 5.52 7.53
avg. #skills/team 8.57 9.71 6.29 9.97 1.54 1.76 1.37 1.57

probability 𝑝 (e|s) to learn 𝑓𝜽 . The encoder maps the sequence of
skills [𝑠𝑖1 , . . . , 𝑠𝑖𝑛 ] onto h𝑛 and the decoder generates the sequence
of experts [𝑒 𝑗1 , . . . , 𝑒 𝑗𝑚 ] from the h𝑛 , one expert at a time, decom-
posing the conditional probability 𝑝 (e|s) as∏𝑚

𝑘=1 𝑝 (𝑒 𝑗𝑘 |𝑒 𝑗<𝑘 , s) and
seeking the maximum probability among subsets of experts as an
optimum team for s, i.e., 𝑓𝜃 (s) = e. The probability of generating
an expert at the decoder can be conditioned not only on h𝑛 but
also on all h<𝑛 at the encoder, enabling the decoder to attend to all
skills in the input sequence selectively [41]. To reduce the compu-
tational complexity at the encoder and the decoder, a seq-to-seq
model may have no recurrent connections, like in transformers [56],
enabling parallel calculation of h<𝑛 at the encoder and h>=𝑛 at the
decoder, an architecture that yielded promising performance on
machine translation and led to extensive research on seq-to-seq
modelling [10, 46, 62].

5 Experiment
We seek to answer the following research questions:
RQ1. Does the seq-to-seq approach yield performance improve-
ments over existing multilabel neural team recommenders?
RQ2.Which seq-to-seq model performs the best (worst) for team
recommendation?
RQ3. How well does the seq-to-seq approach generalize across
different domains in team recommendation?

5.1 Setup
Datasets.Our testbed includes four benchmark datasets in team rec-
ommendation literature: dblp [16, 33, 37, 39, 42–45] and uspt [16,
34], which follow similar long-tailed distributions for both experts
and skills over teams, and imdb [6, 16, 35] and gith [16, 31, 32],
which follow long-tailed distribution of experts but uniform dis-
tribution of skills over teams. Each dataset was preprocessed to
ensure a team consisted of more than 3 experts, and each expert
participated in at least 75 teams. Table 1 shows the mapping of raw
data properties to the team T , skill S, and expert E sets, along with
a summary of statistics.
Baselines.We compare two categories of baselines: (1) existing neu-
ral team recommenders including variational Bayesian feedforward
neural network with multi-hot (bnn) [44] and dense (bnn_emb) [43]
vector representation in the input layer; (2) seq-to-seq models in-
cluding recurrent recommender network (rrn) [60], vanilla recur-
rent neural network with attention (rnn-att) [66], convolutional
seq-to-seq (convs2s) [17], and the transformer [56].

Table 2: Hyperparameters and running settings for models.

transformer convs2s rnn-att
rrn,bnn
bnn_emb

batch size 128 8+ , 128 128 128
learning rate Vaswani et al. [56] 0.1
epochs 20 1+ , 20 20 20
optimizer Adam

hidden layer size 512 128 128, 512* 128
hidden activation relu, softmax glu tanh, sigmoid relu

output layer 128 128 128 | E |
output activation softmax sigmoid
+ : convs2s model setting for uspt dataset.

The transformer recommends experts through its parallel self-
attention mechanism, where each selection considers both the en-
tire skill sequence and all previously predicted experts simultane-
ously, capturing dependencies regardless of their sequence position.
The convs2s model, on the other hand, processes skill-expert rela-
tionships through stacked convolutional layers that create hierarchi-
cal representations. Lower layers capture local skill-expert matches,
while deeper layers learn broader team composition patterns, cap-
turing relationships between distant elements in the sequence effi-
ciently. The rnn-att learns the expert selection sequentially, and
in the hidden state, the expert choice is updated using attention to
focus on which expert is relevant to which skill. The rrnmodel is an
item-user recommender system that assumes dynamic (temporal)
embeddings for users and items to capture behavioral trajectories
using lstm for better prediction accuracy.We used opennmt-py [36]
for implementation of seq-to-seq models except for rrnwhose code
has kindly been provided by its authors [60]. Table 2 summarizes
the models’ hyperparameters and running settings.
Evaluation. We randomly select 15% of teams for the test set and
perform 3-fold cross-validation on the remaining teams for model
training over 20 epochs for all the models in all datasets except
for the convs2s in uspt dataset with 1 epoch due to intractable
time complexity, which results in one trained model per fold. Given
a team (s, e) from the test set, we compare the sequence of ex-
perts e′, predicted by the model of each fold, with the observed
subset of experts e and report the average performance of models
on all folds in terms of classification metrics including precision,
recall, as well as information retrieval metrics including normal-
ized discounted cumulative gain (ndcg) and mean average precision
(map) at 𝑘 ∈ {2,5,10} first generated sequence of experts. The final
results are obtained by averaging the performance metrics across all
folds for a robust evaluation of the model’s predictive capabilities
while minimizing fold-specific variation in the data distribution.

5.2 Results
Foremost, we acknowledge that all models achieve low values of
evaluation metrics for practical applications of team recommenda-
tion, which is primarily due to the simplicity of the neural model
architectures and the small number of training epochs given the
intensive computational demands for such methods coupled with
our limited computational resources; metric values are reported
in % for ease of readability and comparison. Our main goal is to
showcase the optimum solution setting, seq-to-seq vs. multilabel
classification for team recommendation.



In response to RQ1, i.e., whether seq-to-seq models yield bet-
ter performance vs. feedforward models, the results from Table 3
demonstrate that all seq-to-seq models outperform the feedforward
ones across metrics and datasets. This can be attributed to condi-
tioning of expert recommendation on the previously recommended
experts in the output sequence, allowing for more robust prediction
compared to the inherent sparse activations in the output layer of
feedforward models. Notably, seq-to-seq models’ relative improve-
ments have been as high as 82x in some datasets, suggesting the
right track for the most suitable neural architecture for team rec-
ommendation. The only exception is rrn, which performs on par or
even poorer than the feedforward baselines and will be discussed
more in RQ2.

In response to RQ2, looking into the seq-to-seq models for the
best (worst) performance, from Table 3, the transformer consis-
tently outperforms other models across most datasets and metrics.
This is because the transformer benefits from (1) its self-attention
mechanism, which allows capturing the relevance of skills indepen-
dently and simultaneously, (2) the encoder-decoder structure effec-
tively captures the input skill domain and the output expert domain
regardless of position in the sequence due to (1), and (3) the parallel
processing. The runner-up, however, depends on the underlying
distribution of skills over teams (the input sequence) in a dataset.
In dblp and uspt, convs2s is the runner-up, whereas in imdb and
gith, rnn-att is the second-best. The convs2s model’s perfor-
mance is particularly strong on large datasets like uspt with long-
tailed distributions of skills and experts over teams. The rnn-att
model’s performance is affected by the dataset’s distribution shape,
struggling with long-tailed distributions but performing well on
uniformly distributed skills like in imdb. Lastly, the worst seq-to-seq
model is rrn, as mentioned in RQ1, which falls short of consis-
tently outperforming compared to feedforward baselines across
datasets and metrics. Specifically, rrn uses lstm without attention
mechanism, which means all relevant skills must be in a fixed-size
hidden state to be used as historical information.

To answer RQ3, i.e., whether the outperformance of seq-to-seq
models can generalize to various domains, the results from Table 3
demonstrate superior performance compared to the baselines in all
four datasets across metrics. However, the extent of improvement
depends on the underlying dataset, esp., the distribution of skills
over teams. In imdb and gith, where the skills are distributed uni-
formly in the input sequence, the improvement extends to 5x on
average across metrics. In contrast, when the skills are distributed
in a long-tailed fashion, the improvement increases to about 82x.
For both types of distributions of skills, the improvement is at least
2x. This showcases how well the seq-to-seq models generalize to
various domains over the baselines.

6 Concluding Remarks and Future Work
In this paper, we studied the team recommendation problem as a se-
quence prediction task through seq-to-seq neural architectures. The
results show that these architectures yield performance improve-
ments over existing feedforward models, with the transformer
model consistently outperforming other models across all datasets
and metrics. The findings also highlight the importance of consid-
ering the distribution of skills over teams, as different seq-to-seq

Table 3: Comparative results of multilabel vs. seq-to-seq neu-
ral team recommendation methods.

𝑘 transformer convs2s rnn-att rrn bnn bnn_emb

dblp

%precision 2 10.4119 2.4998 3.6176 0.0570 0.0570 0.1124
5 7.0113 1.6122 2.3581 0.0391 0.0663 0.1290
10 3.5392 0.8242 1.1992 0.0472 0.0710 0.1251

%recall 2 6.3457 1.5071 2.1698 0.0380 0.0351 0.0668
5 10.5477 2.4177 3.5115 0.0630 0.0993 0.1909
10 10.6397 2.4760 3.5753 0.1552 0.2118 0.3699

%ndcg 2 10.3611 2.4770 3.5822 0.0478 0.0538 0.1083
5 10.4597 2.4276 3.5184 0.0523 0.0806 0.1555
10 10.4824 2.4487 3.5391 0.0959 0.1330 0.2397

%map 2 5.9463 1.3554 1.9412 0.0217 0.0242 0.0474
5 9.2909 2.0008 2.8791 0.0281 0.0411 0.0792
10 9.3210 2.0127 2.8930 0.0446 0.0558 0.1033

uspt

%precision 2 41.7289 28.5717 23.9729 0.0239 0.0657 0.3663
5 31.0677 24.6530 17.7873 0.0383 0.0769 0.4123
10 16.5169 15.2382 9.4717 0.0654 0.0910 0.3748

%recall 2 23.1038 13.9104 12.9871 0.0140 0.0353 0.1608
5 41.1643 28.8167 23.0358 0.0500 0.0976 0.4509
10 42.6086 33.7595 23.8896 0.1370 0.2212 0.8141

%ndcg 2 41.6095 28.3606 23.9146 0.0221 0.0655 0.3652
5 42.0309 30.0325 23.8227 0.0408 0.0883 0.4531
10 42.1435 31.4137 23.8270 0.0868 0.1481 0.6094

%map 2 22.4053 13.0305 12.4784 0.0096 0.0266 0.1212
5 38.6272 24.4598 21.3567 0.0186 0.0433 0.2027
10 39.7591 27.1994 22.0112 0.0340 0.0592 0.2583

imdb

%precision 2 1.5454 1.6097 1.6985 0.0000 0.2128 0.4255
5 1.4574 1.4552 1.4804 0.8511 0.5106 0.5106
10 0.9035 0.8998 0.9027 0.8511 0.4255 0.6383

%recall 2 0.7669 0.7952 0.8193 0.0000 0.1418 0.2837
5 1.8093 1.8013 1.8043 1.4184 0.8511 0.8511
10 2.2085 2.1926 2.1792 2.8369 1.3050 1.9574

%ndcg 2 1.5479 1.6173 1.7003 0.0000 0.1646 0.3292
5 1.7364 1.7595 1.7883 0.8163 0.5699 0.5923
10 1.9039 1.9222 1.9333 1.4606 0.7848 1.1358

%map 2 0.6172 0.6506 0.6650 0.0000 0.0709 0.1418
5 1.0327 1.0487 1.0450 0.3191 0.2600 0.2813
10 1.0914 1.1041 1.0975 0.6265 0.3148 0.4389

gith

%precision 2 32.1596 25.0590 29.7008 0.0000 3.0693 7.3267
5 21.6055 16.9509 20.1806 0.1980 2.8515 4.7129
10 12.7104 9.9503 12.0029 0.0990 2.6931 3.3861

%recall 2 13.8543 11.0787 12.8103 0.0000 1.2164 3.5441
5 22.2914 18.0735 20.7963 0.0619 2.8846 5.1580
10 24.0868 19.4837 22.6186 0.0619 5.1174 6.1885

%ndcg 2 32.4291 25.3569 29.7647 0.0000 3.1365 6.4753
5 28.2538 22.3664 26.1975 0.1679 3.2893 5.8418
10 26.9900 21.5849 25.1263 0.1090 4.2340 6.2665

%map 2 12.9552 10.5164 11.9759 0.0000 1.0104 2.3424
5 19.3215 15.5615 17.9982 0.0206 1.5706 3.0822
10 20.7984 16.6428 19.4844 0.0206 2.1633 3.3837

models exhibit strengths in different datasets and distribution types.
Our future work includes investigating seq-to-seq models that in-
corporate additional contextual factors, such as geolocation (for
geo-aware team recommendation), and the prioritization of skills
or experts based on criteria like their importance to a project.
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