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ABSTRACT
Neural team recommendation models have brought state-of-the-art
efficacy while enhancing efficiency at recommending collaborative
teams of experts who, more likely than not, can solve complex tasks.
Yet, they suffer from popularity bias and overfit to a few dominant
popular experts and, hence, result in discrimination and reduced vis-
ibility for already disadvantaged non-popular experts. Such models
are trained on randomly shuffled datasets with the disproportion-
ate distribution of a few popular experts over many teams and a
sparse long-tailed distribution of non-popular ones, overlooking
the difficulty of recommending hard non-popular vs. easy popu-
lar experts. To bridge the gap, we propose three curriculum-based
learning strategies to empower neural team recommenders sifting
through easy popular and hard non-popular experts and to mitigate
popularity bias and improve upon the existing neural models. We
propose (1) a parametric curriculum that assigns a learnable param-
eter to each expert enabling the model to learn an expert’s levels
of difficulty (or conversely, levels of popularity) during training, (2)
a parameter-free (non-parametric) curriculum that presumes the
worst-case difficulty for each expert based on the model’s loss, and
(3) a static curriculum to provide a minimum base for comparison
amongst curriculum-based learning strategies and lack thereof. Our
experiments on two benchmark datasets with distinct distributions
of teams over skills showed that our parameter-free curriculum
improved the performance of non-variational models across dif-
ferent domains, outperforming its parametric counterpart, and the
static curriculum was the poorest. Moreover, among neural models,
variational models obtain little to no gain from our proposed cur-
ricula, urging further research on more effective curricula for them.
The code to reproduce our experiments is publically available at
https://github.com/fani-lab/OpeNTF/tree/cl-wsdm25.

1 INTRODUCTION
As modern tasks’ complexities surpass the capacity of individual
experts, collaborative teams of experts are employed to interact
interdependently and adaptively toward accomplishing a common
goal [45]. Recommending teams of experts whose success is almost
surely guaranteed has been a surge of research interest in many
disciplines for years, including psychology [25], the science of team
science (scits) [68], management [3], medicine [56], and industrial
and mechanical engineering [43]. A rich body of various computa-
tional methods, from operations research [4, 13, 32, 57, 62, 66, 69],
social network analysis [33, 55], and more recently, machine learn-
ing [10, 18, 47, 48] have been proposed to replace the tedious, error-
prone, and suboptimal manual search by a human selector, who
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Table 1: Summary of our findings. Black vs. gray show strong
vs. conservative positive (✓✓✓) or negative (✕) answers.
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Figure 1: Long-tail distribution of experts in dblp and imdb.

has hidden personal and societal biases [51], falls short for an over-
whelming number of experts, and fails to consider a multitude of
criteria to optimize simultaneously [6]. Specifically, neural models
have been proposed to learn the distributions of experts and their
skill sets in the context of successful teams in the past to draw future
successful teams. Due to the iterative and online learning procedure,
and availability of training datasets, such models brought state-
of-the-art efficacy while enhancing efficiency [10, 11, 44, 47, 49].
Neural team recommendation models, by and large, frame the team
recommendation problem as amultilabel Boolean classification task,
learning to recommend a subset of experts whose collaborations
for a predefined set of required skills yield success. Each expert
is mapped to a label and would be recommended if their class’s
prediction probability is close to one. Such models, however, suffer
from popularity bias; that is, they overfit popular experts when
recommending teams and, hence, result in discrimination and re-
duced visibility for non-popular ones. Not unexpectedly, themodel’s
popularity bias is due to the biased training datasets wherein few
dominant experts (minority popular) have been disproportionately
distributed over many teams compared to the sparse long-tailed
distribution of many experts (majority non-popular), as shown in
Figure 1 for two well-known benchmark datasets in the team recom-
mendation literature. Moreover, existing neural models are trained
based on the standard learning strategy, i.e., randomly shuffled
training samples of teams, overlooking the different levels of diffi-
culties in observing and learning from non-popular experts versus
popular ones in such biased training datasets, which discounts their
recommendation quality.

In this paper, we propose to leverage curriculum-based learning
strategies that provide an order between experts from the easy pop-
ular experts to the hard non-popular ones to overcome the neural
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models’ popularity bias. We propose two dynamic self-paced cur-
ricula that learn experts’ difficulty level (easy popular vs. difficult
non-popular) in response to a neural model’s loss during learn-
ing procedure. In contrast to dynamic curricula, we also set up a
static curriculum wherein experts are ordered statically prior to
learning and the order remains constant during training, oblivi-
ous to the model’s loss. Curriculum-based learning strategies have
been successfully employed in a wide range of machine learning
tasks [14, 17, 23, 24, 26, 28, 39, 46, 65, 71], yet, to our knowledge,
their application in team recommendation has not been explored
before our study.

Our experiments on two large-scale benchmark datasets with
varied distributions of teams over skills in a host of variational and
non-variational models, as summarized in Table 1, demonstrated
the consistent synergistic effect of our non-parametric curriculum
for non-variational models across different domains, outperforming
its parametric counterpart, and the static curriculum is the poorest.
For variational models, however, the gain from our proposed cur-
ricula was marginal and only in one domain (dblp), urging further
research on curricula for them. In summary, our contributions are:
(1) We propose dynamic curricula to empower neural team recom-

menders sifting through easy popular and hard non-popular
experts to mitigate popularity bias, which is a novel and inven-
tive step in team recommendation literature.

(2) We present a parametric curriculum, which assigns a learnable
parameter to each expert to asses their difficulty levels during
training, and a parameter-free curriculum that presumes the
worst-case difficulty for each expert based on model’s feedback,
along with a static curriculum to provide a minimum base for
comparison amongst curriculum-based learning strategies and
lack thereof.

(3) We demonstrate the efficacy of our parametric-free curriculum
in boosting the efficacy and efficiency of non-variation neural
models across two large-scale benchmark datasets from various
domains with distinct distributions of skills in teams.

2 RELATEDWORKS
The related works to this paper are primarily centred around (1)
team recommendation and (2) curriculum learning.

2.1 Team Recommendation
Team recommendation methods can be distinguished based on
the way optimizations are performed: (1) search-based, where the
search for an almost surely successful team (optimum team) is car-
ried over all subsets of experts using operation research techniques
(e.g., integer programming) [2, 7, 9, 58, 67] or over all subgraphs
of the expert network using graph-based methods [19, 33, 41, 55],
(2) reinforcement-based [16, 40, 70], where team recommendation
processes are emulated for team sports or online multiplayer games
through trial and error in a multi-agent environment using neural-
based policy estimators where autonomous experts learn to negoti-
ate and form teams to perform a task that an expert cannot com-
plete alone, and 3) learning-based [18, 27, 35, 47, 48, 52], wherein
all past successful team compositions are considered as training
samples to learns the relationships between experts and their skills
within the context of teams using neural models. Search-based

and reinforcement-based methods are, however, computationally
intractable dealing with mid to large-scale sets of experts in real-
world applications. In contrast, learning-basedmethods have shown
efficiency while enhancing efficacy for iterative and online learning
procedures and, hence, took the stage and became canonical.

Proposed learning-based approaches are mainly neural-based
including non-variational feedforward [48], variational Bayesian
network [11, 27, 48], and graph neural network [35, 47, 52]. Ini-
tially, Rad et al. [48] defined team recommendation as a multilabel
classification task and, as a naive baseline for a minimum level of
comparison, developed a simple feedforward network with one
hidden layer to map the required subset of skills in the input layer
onto a subset of experts in the output layer using the standard
cross-entropy loss. Rad et al. [27, 48] then proposed a variational
Bayesian network to mitigate the popularity bias through uncer-
tainty in neural model weights in the form of Gaussian distributions.
In this line, Dashti et al [10] further proposed negative sampling
heuristics assuming groups of experts who have little or no collabo-
rative experience for the required subset of skills have a low chance
for a successful collaboration and can be considered as virtually
unsuccessful teams. Given that popular experts were dominant in
the training datasets, Dashti et al. presume that groups of popular
experts are more likely to be selected as negative samples of teams.
Successfully as they are, the primary focus of Dashti et al. and Rad
et al. was the maximization of the efficacy by tailoring the recom-
mended experts for a team to the required skills only, overlooking
to substantiate whether the higher efficacy comes with mitigation
of popularity bias.

Sapienza et al.[52] were the first to use a graph neural network
in the form of an autoencoder for team recommendation in online
multiplayer games. Later, Rad et al.[47] proposed to transfer dense
vector representations of skills for the input of variational Bayesian
neural network from a heterogeneous graph whose nodes are teams,
experts, skills, and locations and edges connect experts who have
collaborated in a team residing in a location using Dong et al.’s
metapath2vec [12] and obtained the state-of-the-art performance.
More recently, Kaw et al. [35] employed deep graph infomax [61],
a graph convolution network with attention layer as an encoder, to
learn more effective vector representations of skills in less training
epochs owing to the convolutional architecture and contrastive
learning procedure.

Nonetheless and despite few efforts [10, 27, 48], existing neural
team recommendation models still withhold extreme popularity
bias due to their learning strategy that overlooks the different levels
of difficulties in recommending non-popular experts vs. popular
ones in a biased dataset. In this paper, we aim to bridge the gap via
curriculum learning strategies.

2.2 Curriculum Learning
A curriculum for a machine learning model can be static and prede-
fined, or dynamically adjusted during model learning. Predefined
static curricula have been effectively employed in natural language
processing and computer vision. For instance, in machine transla-
tion, Platanios et al. [46] defined a static curriculum based on the
length of a sentence, assuming longer sentences are more difficult,
whereas Kocmi et al. [36] considered a sentence with more rare



words are more difficult. In computer vision, Guo et al. [24] defined
static curriculum based on the distribution of objects in an image;
the more objects in the image, the more potential for misclassi-
fication, and hence, the more difficult for the model. Simple and
straightforward, static curricula, however, overlook the feedback
from the model during learning. A training sample that appears to
be difficult for a human observer might be easy for a model or vice
versa, as shown in the image classification task [29]. Moreover, the
complexity of training samples evolves from the model’s perspec-
tive as it undergoes learning iterations and accumulates knowledge,
and what was initially difficult becomes easier for the model after.

Unlike static curricula, dynamic curricula reorganize the se-
quence of training data based on their varying levels of difficulty in
response to the model’s losses during the learning process. Han et
al. [28] and others [65, 71] proposed using an external pretrained
model as a teacher to evaluate the difficulty of training samples for
a student model based on its loss value during learning. Teacher-
student approaches, however, suffer from a lack of self-sufficiency
due to their reliance on external, usually large teacher models.
In contrast, Kumar et al. [39] introduced a self-paced curriculum,
where the model autonomously selects difficult or easy samples
based on its own loss as feedback. To achieve a task-agnostic uni-
versal dynamic curriculum, Saxena et al. [53] proposed learnable
parameters for the difficulty level of each individual data point.
These parameters dynamically adjust the importance of samples
during training via gradient descent, facilitating a differentiable cur-
riculum. Parametric curricula, however, have overheads like more
parameters to learn overall and more learning epochs, which would
come at the cost of overfitting the model’s original parameters.
To fill the gap, Castells et al. [5] proposed a parameter-free (non-
parametric) dynamic curriculum that can be integrated with various
tasks and loss functions without altering the training process.

Despite extensive research on curriculum learning [42, 54, 64], no
work has addressed neural models’ popularity bias using curriculum
learning, in general, except that of the very recent work by Jeon et
al. [31] to address cold-start bundle recommendation. Moreover, no
work has applied curriculum learning to team recommendation. To
the best of our knowledge, we are the first to bridge curriculum-
based learning strategies to address popularity bias in the context
of team recommendation.

3 TASK FORMULATION
Given a set of skills S = {𝑖} and a set of experts E = { 𝑗}, a success-
ful team of experts e ⊆ E; e ≠ ∅ that collectively cover the skill set
s ⊆ S; s ≠ ∅ is shown by (s, e), and T = {(s, e)} is the collection
of all successful teams. The team recommendation problem aims at
recommending an optimal subset of experts e such that their collab-
oration in the predicted team (s, e) is successful, that is (s, e) ∈ T ,
while avoiding a subset of experts e′ resulting in (s, e′) ∉ T . More
concretely, the team recommendation problem is to find a mapping
function 𝑓 of parameters 𝜽 from the powerset of skills to the power-
set of experts such that 𝑓𝜽 : P(S) → P(E), 𝑓𝜽 (s) = e. Neural team
recommender estimates 𝑓𝜽 (s) using a multilayer neural network
that learns, from T , to map a vector representation of subset of
skills s, referred to as 𝑣s, to a vector representation of subset of

experts e, referred to as 𝑣e, by maximizing the posterior probability
of 𝜽 in 𝑓𝜽 over T , that is, argmax𝜽 𝑝 (𝜽 |T ).

For the vector representation of subset of skills 𝑣s, neural team
recommenders adopt either (1) the occurrence vector representation
for s, which is a Boolean vector of size |S|, i.e., 𝑣s ∈ {0, 1} |S | where
𝑣s [𝑖] = 1 if 𝑖 ∈ s, and 0 otherwise, or (2) a dense low 𝑑-dimensional
vector representation of s, 𝑑 << |S|, pretrained by a graph neural
network method [35, 47, 50]. In the output layer for vector repre-
sentation of the subset of experts 𝑣e, neural team recommenders
frame the problem as a multilabel Boolean classification task and
used occurrence vector representation for s, that is, 𝑣e ∈ {0, 1} | E |

where 𝑣e [ 𝑗] = 1 if 𝑗 ∈ e, and 0 otherwise, as seen in Figure 2. Using
a neural model of one hidden layer h of size 𝑑 , without loss of
generality to multiple hidden layers, with the input layer 𝑣s and
output layer 𝑣e, a neural team recommender can be formalized as,

h = 𝜋 (𝜽 1vs + b1) (1)
𝑙𝑜𝑔𝑖𝑡𝑠 → z = 𝜽 2h + b2 (2)

ve = 𝜎 (z) (3)

where 𝜋 is a nonlinear activation function, 𝜽 = 𝜽 · ∪ b· are learn-
able parameters for the mapping function 𝑓 , and 𝜎 is the sigmoid
function to generate the predictions for each class/expert. During
training, given a team (s, e), neural models tune the parameters
𝜽 by maximizing the posterior probability of 𝜽 in 𝑓𝜽 over T . By
Bayes theorem:

argmax𝜽 𝑝 (𝜽 |T ) ∝ 𝑝 (T |𝜽 )𝑝 (𝜽 ) = 𝑝 (𝜽 )
∏

(s,e) ∈T
𝑝 (e|s, 𝜽 ) (4)

where 𝑝 (T ) is independent of optimizing the parameters 𝜽 , 𝑝 (T |𝜽 )
is the likelihood:

𝑝 (e|s, 𝜽 ) =
∏
𝑗∈𝑒

𝜎 (z[ 𝑗]) ∝
∑︁
𝑗∈𝑒

log 𝜎 (z[ 𝑗]) (5)

where 𝑝 (T |𝜽 ) is the likelihood and 𝑝 (𝜽 ) is the prior joint proba-
bility of weights, which is unknown. The true prior probability of
weights 𝑝 (𝜽 ) cannot be calculated analytically or efficiently sam-
pled [22], and as such, we can assume uniform probability distribu-
tion over all possible real-values of 𝜽 and proceed with maximum
likelihood estimation 𝑝 (T |𝜽 ) [10], or estimate 𝑝 (𝜽 ) byGaussian dis-
tribution and calculate the maximum a posteriori via a variational
Bayesian neural architecture [27, 35, 47, 48]. Whether maximum
likelihood estimation or maximum a posteriori optimization is used
to estimate 𝑓 , the long tail problem in the distributions of teams
over experts renders the neural model to overfit popular experts. To
tackle the issue, we propose curriculum-based learning strategies
for neural models without modifications to their architectures.

4 PROPOSED CURRICULA
As opposed to the random shuffling of the training sample of teams,
we propose learning curricula that are cognizant of gradual moves
from easy popular experts to difficult non-popular ones based on
the neural model’s learning loss. We propose one static and two
dynamic self-paced curricula to improve the performance of neural
team recommenders. While our static curriculum serves as a base-
line, we opt for dynamic curricula since team recommendation finds
applications in different domains, from the entertainment industry
(e.g., movie production) to academia (e.g., research teams), each of
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Figure 2: Standard (left) vs. dynamic curriculum (right) loss.

which has its own specificities, making it impractical to adopt static
predefined curricula for all varied domains. Further, the choice of
a self-paced curriculum over student-teacher-based is motivated
for its self-sufficiency with no dependency on an external large
pretrained model as a teacher.

4.1 Static Curriculum
Prior to the model’s learning process, we define an order among
the training instances of teams based on the difficulty levels of their
experts. We presume a neural model easily predicts popular experts
due to their frequent participation in many teams during training
but struggles to predict non-popular experts, who participate spar-
ingly. Therefore, the difficulty level of a team can be defined based
on the proportion of its popular experts, i.e.,

𝑑 ((s, e)) = 1 − |{ 𝑗 : 𝑗 ∈ e, 𝑗 is popular}|
|e| (6)

where 𝑑 : T → R
[0,1] is the difficulty measurer function, which

calculates a fixed difficulty level per team, from 0.0 for the easiest
teams whose all experts are popular to 1.0 for the most difficult
teams whose all experts are non-popular. Eq. 6, however, requires
defining the popularity status of experts, which could be contro-
versial. To avoid varied interpretations, we follow recommender
system literature [1, 15] where the popularity status of an expert
can be objectively measured based on the number of teams the
expert has participated in. An expert is popular if the expert par-
ticipated in more than the average number of teams per expert
over the entire dataset and non-popular otherwise. It is worth not-
ing that, although an expert’s participation in many teams, e.g.,
movies in imdb or research papers in dblp, does not necessarily
indicate popularity from the people’s perspectives, repetition of the
expert in many training samples of teams from the neural model’s
perspective does.

During learning epochs, training samples of teams are selected in
batches based on the proportions of easy vs. difficult teams. Initially,
we manually set the proportion to favour more easy teams with
many popular experts, like 90% easy teams vs. 10% difficult teams.
As the training progresses and the model evolves, we gradually
reverse the proportions to favour more difficult teams with many
non-popular experts, like 10% easy teams vs. 90% difficult teams.

4.2 Parametric Curriculum
We further propose a parametric self-paced curriculum to dynami-
cally estimate the difficulty (conversely, popularity) level of experts
in a self-supervised manner during learning. We define a new set of
learnable parameters for the set of experts E as a vector of parame-
ters 𝝓 ∈ R | E | to learn the levels of difficulties for experts based on

the neural model’s loss, in parallel to learning the model’s param-
eter 𝜽 . Initially, all of the 𝝓 values are low, i.e., 𝝓 [ 𝑗] ≃ 0;∀𝑗 ∈ E,
assuming all experts are at the most difficult level (conversely, as-
suming all experts are non-popular). After the first learning batch,
𝝓 would be updated; a true expert 𝑗 that has been recommended
correctly with a high probability value, equivalently low loss value,
would be considered as an easy expert and 𝝓 [ 𝑗] would be increased
toward 1. However, if the model produces a low probability value
for the true expert, that expert would be difficult, and hence, 𝝓 [ 𝑗]
remains low. We update the model’s learning parameters 𝜽 based
on not only the recommendation losses of true experts but also the
𝝓 values such that the model knows the easy experts sooner, and
gradually moves toward the more difficult ones. From Figure 2, for
a true yet difficult expert 𝑗 whose 𝝓 [ 𝑗] is low, we diminish its rec-
ommendation loss for the model to update its learning parameters
𝜽 so as to decrease the 𝑗 ’s loss in the next learning iteration, and
meanwhile, increasing 𝝓 [ 𝑗] (trying to learn expert 𝑗 and make it as
an easy expert). For an easy true expert 𝑗 , i.e., 𝝓 [ 𝑗] ≃ 1, however,
we amplify its loss to avoid overfitting to the model’s parameters 𝜽 .

To implement our proposed parametric loss-based curriculum,
we follow the common forward pass during training for a given
team (s, e) ∈ T , i.e., we input the vector representation of the skill
subset s, i.e., 𝑣s through the neural model in eq.1 and compute
the experts’ probability of being in the team in the output 𝑣e after
applying the sigmoid followed by the original loss (eq.5). How-
ever, before backpropagation of the gradients, we further learn the
difficulty levels of experts based on the losses generated for the
current sample team as model’s feedback not only for the model’s
parameters 𝜽 but also for 𝝓. We modify eq. 5 to scale up (down) the
gradients of losses for difficult experts having low (high) 𝝓:

𝑙 ((s, e), 𝝓) =
∑︁
𝑗∈e

−log 𝜎 ( z[ 𝑗]
𝝓 [ 𝑗] ) (7)

If we treat all the experts equally easy by setting the 𝝓 = [1, 1, ..., 1],
eq.7 recovers the original loss. The gradient of the loss with respect
to 𝑣e to optimize the model parameters 𝜽 will be:

𝜕𝑙

𝜕z[ 𝑗] =
−1

𝜎 ( z[ 𝑗 ]𝝓 [ 𝑗 ] )
·𝜎 ( z[ 𝑗]

𝝓 [ 𝑗] )·(1−𝜎 (
z[ 𝑗]
𝝓 [ 𝑗] ))·

1
𝝓 [ 𝑗] =

1
𝝓 [ 𝑗] ·(𝜎 (

z[ 𝑗]
𝝓 [ 𝑗] )−1)

(8)
During training, we also need to update the difficulty levels of
experts 𝝓. The gradient of the loss with respect to 𝝓:

𝜕𝑙

𝜕𝝓 [ 𝑗] =
−1

𝜎 ( z[ 𝑗 ]𝝓 [ 𝑗 ] )
· 𝜎 ( z[ 𝑗]

𝝓 [ 𝑗] ) · (1 − 𝜎 ( z[ 𝑗]
𝝓 [ 𝑗] )) ·

−z[ 𝑗]
𝝓 [ 𝑗]2

=
z[ 𝑗]
𝝓 [ 𝑗]2

· (1 − 𝜎 ( z[ 𝑗]
𝝓 [ 𝑗] ))

(9)

The parametric curriculum, however, introduces additional com-
plexity to the training process, requiring more learning epochs
to accommodate the extra parameters 𝝓. The size of 𝝓 is directly
proportional to the number of experts in the training set, hence,
the parametric curriculum may fall short of training efficiency and
inference efficacy trade-off when compared to the static curriculum
or the randomly shuffled training strategy when dealing with a
large pool of experts. In Section 5, RQ4, we revisit this challenge
when comparing each of our proposed curricula.



Table 2: Statistics of the raw and preprocessed datasets.
dblp imdb

raw filtered raw filtered
#teams 4,877,383 99,375 507,034 32,059
#unique experts 5,022,955 14,214 876,981 2,011
#unique skills 89,504 29,661 28 23
avg #expert per team 3.06 3.29 1.88 3.98
avg #skill per team 8.57 9.71 1.54 1.76
avg #team per expert 2.97 23.02 1.09 62.45
avg #skill per expert 16.73 96.72 1.59 10.85
#team w/ single expert 768,956 0 322,918 0
#team w/ single skill 5,569 56 315,503 15,180

4.3 Non-parametric Curriculum
Alternatively, we propose a non-parametric curriculum, which re-
quires no set of parameters 𝝓 for learning the experts’ difficulty
levels. Similar to the parametric curriculum, our non-parametric
curriculum scales up (down) the loss:

𝑙 ((s, e), 𝝓 [ 𝑗]) = (

original loss in eq. 5︷           ︸︸           ︷
−log 𝜎 (z[ 𝑗]) −𝜏)𝝓 [ 𝑗] + 𝜆(log 𝝓 [ 𝑗])2 (10)

where 𝜏 is a threshold that separates easy experts from difficult ones
based on their respective loss, 𝜆 > 0 is a regularization hyperparam-
eter which controls the severity of new loss’ effect on the normal
loss, and 𝝓 is the learnable parameters for levels of difficulties for
expert set E. However, as opposed to the parametric curriculum,
we set the difficulty level of an expert to its worst case for a loss
value, cancelling the learning the difficulty level parameters 𝝓 for
experts’, reducing the computational complexity of the training.
Therefore, the curriculum-based loss becomes:

𝑙 ((s, e), 𝝓 [ 𝑗]) = 𝑙 ((s, e), 𝝓∗ [ 𝑗]) (11)

where 𝝓∗ would only depend on the value of the original loss and
has a closed-form solution [5]:

𝝓∗
𝑙 ( (s,e),𝝓 [ 𝑗 ] ) = argmin𝝓 [ 𝑗 ]𝑙 ((s, e), 𝝓 [ 𝑗])

= 𝑒−𝜔 ( 12 max(
−2
𝑒
,
−log 𝜎 (z[ 𝑗 ])−𝜏

𝜆
) ) ; 𝑗 ∈ e

(12)

where 𝜔 is the product logarithm (Lambert omega) function [8].
During a learning iteration, we calculate eq.12 as the difficulty
level of expert 𝑗 ∈ e for the input (s, e) from the original loss. We
then propagate the gradients of eq.10 to the model’s parameters 𝜽
assuming the result of eq.12 as a constant.

5 EXPERIMENT
In this section, we seek to answer the following research questions:
RQ1: Can curriculum-based learning strategies improve the efficacy
of neural team recommenders via mitigating popularity bias?
RQ2: Does curriculum-based learning strategy improve the effi-
ciency of neural team recommenders while enhancing efficacy?
RQ3: Is the impact of curricula consistent across datasets from
various domains with distinct statistical distributions?
RQ4: Among our proposed curricula, which curriculum has been
effective the most (least)?

5.1 Datasets
We evaluate our proposed curricula on two well-known large-scale
benchmark datasets in team recommendation literature, including
dblp [37, 41, 59], consisting of computer science publications and
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Figure 3: Long-tail vs. uniform distribution of skills in dblp
and imdb, respectively.

imdb [30, 33, 34] consisting of movies. In dblp, we see each publi-
cation as a successful team whose authors are the experts and fields
of studies are the set of skills. In imdb, we consider each movie as a
successful team for it has been produced, experts are the cast and
crew, and the movies’ genres are the teams’ skills. Regarding imdb,
contrary to movie recommender systems or movie review analysis,
wherein the goal is to recommend a movie, herein, we aim to rec-
ommend a team of casts and crews to produce a movie. We filtered
out singleton teams as well as experts who have participated in
very few teams. Earlier from Figure 1, we observe the distributions
of teams over experts have a very long tail of non-popular experts
in both datasets; many experts (researchers in dblp and cast and
crew in imdb) have participated in very few teams (papers in dblp
and movies in imdb). With respect to the set of skills, from Figure 3,
while dblp suffers further from the long-tailed distribution of skills
in teams, imdb follows a more fair distribution; imdb have a limited
number of skills (genres) all of which are generally employed by
many movies. Also, Table 2 reports additional point-wise statistics
on the raw and filtered datasets.
Popularity Label. As for our static curriculum, we consider an ex-
pert popular if she has participated in more teams than the average
number of teams per expert. From Table 2, experts who participate
in more than 23.02 teams in the dblp and 62.45 teams in imdb are
considered popular, while the rest are assumed to be non-popular.

5.2 Baselines and Hyperparameters
We compare the impact of our proposed curricula on improving
the performance of two neural model alternatives, especially when
the training datasets are heavily biased toward popular experts: (1)
non-variational feedforward neural network (fnn-*) [10] and (2)
variational Bayesian neural network [27, 48] (bnn-*). Both models
include a single hidden layer of size d=128, leaky relu is the ac-
tivation function for the hidden layer, and Adam is the optimizer.
For the input layer, we used sparse occurrence vector represen-
tations of skills of size |S| as well as gnn-based pretrained dense
vector representations of size 𝑑 = 100 [12] (*-gnn-*). We trained
baselines with and without our proposed curricula ({*-sc, *-pc,
*-npc} vs. *-std). We set 𝜏 = 0 and 𝜆 = 0.9 for the non-parametric
curriculum after a grid search for best settings across datasets and
neural baselines in terms of aucroc, as seen in Figure 4. The regu-
larization hyperparameter 𝜆, which controls the degree of impact
from curriculum strategy on the model’s original loss, becomes
more effective at higher values as it increases the penalty on the
model’s loss, thus mitigating the risk of overfitting to easy popular
experts. Conversely, 𝜏 , the threshold that separates easy experts
from difficult ones based on their respective losses, yields the best
results in lower values, posing stricter criteria for classifying an
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Figure 4: Grid search on non-parametric curriculum hyper-
parameters on dblp (left) and imdb (right) based on aucroc.

.expert as easy. Finally, to have a minimum level of comparison, we
also add a model that randomly assigns experts to a team (random).
In total, we compare 16 + 1 baselines.

5.3 Evaluation Strategy and Metrics
Models’ Efficacy. We randomly select 15% of teams for the test
set and perform 5-fold cross-validation on the remaining teams for
model training using the proposed curricula over 10 epochs that
results in one trained model per each fold. Given a team (s, e) from
the test set, a trained model predicts the membership probability
of all experts in the team at the output layer. We select a subset of
experts e′ with the top-𝑘 highest probabilities as the recommended
team of size 𝑘 and compare it with the observed subset of experts
e and report the average performance of models on all folds in
terms of classification metrics including precision and recall at
𝑘 ∈ {2,10}. In contrast to top-𝑘 that enforces a fixed size for the
recommended teams, we can select a probability threshold above
which an expert becomes a member of the recommended team
e′. We report the area under the receiver operating characteris-
tic (aucroc) as an overall performance indicator for the range of
increasing probability thresholds from 0.0 to 1.0.

Classification metrics fail to consider the ranks of the correct ex-
perts among the top-𝑘 . To evaluate a neural model more rigorously,
we additionally use ranking metrics from information retrieval [60],
including normalized discounted cumulative gain (ndcg), and mean
average precision (map) at top-𝑘 ∈ {2,10}. Ranking metrics penal-
ize a neural model if a correct expert of the test team e is positioned
at the lower part of the top-𝑘 recommended experts e′.
Models’ Efficiency.We evaluate neural models at each learning
epoch on the test set to show whether our proposed curricula
improve the efficiency of neural models with fewer learning epochs
while achieving higher inference efficacy.
Models’ Popularity Bias.We used ndkl [20, 21, 63], which mea-
sures the divergence of the actual distribution of non-popular ex-
perts in the top-𝑘 ranked list of recommendations (i.e., the propor-
tions of non-popular vs. popular experts) from the desired distri-
bution using Kullback–Leibler [38], and the lower divergence the
better (↓), with being 0 in the ideal equal distributions. We report
ndkl at top-𝑘 = 10 and compared the results of neural models that
utilize curricula and lack thereof at an increasing range of desired
distribution (proportion) of non-popular experts {0.1, 0.2, ..., 0.9}.
6 RESULTS
Foremost, we acknowledge that baseline methods achieve relatively
low metric values for practical applications of team recommenda-
tion, primarily due to the simplicity of the model architectures
and the small number of learning epochs for our limited access to
computational resources; metric values are reported in % for ease
of readability and comparison. Herein, our main goal is to study the

synergistic effects of our proposed curricula in scaling up neural
models’ performance via mitigating popularity bias. With larger
multi-layer architectures, better results would be expected.

RQ1: Efficacy Improvement via Proposed Curricula: From
Table 3, we can observe that the answer depends on the under-
lying model architecture and training dataset. As seen, our non-
parametric curriculum demonstrates a consistent statistically sig-
nificant performance improvement in comparison with the lack
thereof for the non-variational models (fnn-npc and fnn-gnn-npc)
in both dblp and imdb datasets across all metrics. However, our
parametric curriculum has shown little to no improvement for them
(fnn-*-pc), and the static curriculum is the poorest (fnn-*-sc)
across datasets. Indeed, the standard learning strategy based on the
randomly shuffled dataset is the runner-up (fnn-*-std).

Unlike non-variational models (fnn-*), we cannot observe a
consistent trend for performance improvements of variational
models (bnn-*) by our proposed curricula across datasets. In
dblp, while curriculum learning strategies generally yield improve-
ments for variational models, yet no specific curriculum dominates.
For instance, with occurrence vector representation of skills, the
non-parametric curriculum (bnn-npc) is the best at team size of
𝑘 = 2, but at 𝑘 = 10, the parametric curriculum becomes the
best. However, with gnn-based skill vectors, the static curriculum
(bnn-gnn-sc) is the winner at 𝑘 = 2 while non-parametric cur-
riculum (bnn-gnn-npc) pulls ahead at 𝑘 = 10. In imdb, we see the
worst trend where no curriculum has been successful except for
variational gnn-based models at 𝑘 = 10where the static curriculum
could improve the performance.

While answeringRQ1, we could reproduce Rad et al. [47]’s work
about the performance gain of the gnn-based dense vectors of skills
for non-variational models (fnn-gnn-std) compared to the sparse
occurrence vectors (fnn-std) in dblp dataset, where the number
of skills is large (|S| = 29,661). Notably, Table 3 shows that the
gnn-based models also gain more from our proposed curricula,
maintaining the upward improvement trend. However, we were
unable to reproduce Rad et al. [47]’s work in imdb dataset; that
is, gnn-based vector representation of skills performs poorly com-
pared to occurrence vectors. The reason relates to the relatively
low number of skills in imdb (|S| = 23), where the occurrence vec-
tor representation is already low-dimensional and the sparsity is
negligible. Indeed, gnn-based vectors of size 𝑑 = 100 are of higher
dimension and discount the models’ performance in imdb. From Ta-
ble 3, gnn-based models also gain less from our proposed curricula,
further cementing this reason.

To show whether the performance improvement of the non-
parametric curriculum is indeed due to mitigating popularity bias,
from Figure 5 (left), we observe that non-parametric curriculum
consistently yields less divergence for non-variational models
(fnn-*-npc), hence, better distribution for the desired ratio equal
or above 50% non-popular experts, where we expect a balance or
even more non-popular experts vs. popular ones in the recom-
mended teams across dblp and imdb. For instance, at the extreme
desired ratio of 0.9 where we expect to observe 90% non-popular
experts, not unexpectedly, all baselines fall short of reaching the
desired distribution, yet our non-parametric curriculum obtains
closer distribution (lower ndkl). In imdb, while static curriculum



Table 3: Comparative results of 5-fold neural models with curricula and lack thereof on the test sets for dblp and imdb. ‡ refer
to statistically significant improvements (*-pc and *-npc vs. *-std) when p-value < 0.01. Bold and underlined numbers are
column-wise highest and second-highest per neural architecture, respectively.

dblp
%precision %recall %ndcg %map

@2 @10 @2 @10 @2 @10 @2 @10 %aucroc

random 0.0100 0.0200 0.0100 0.0600 0.0200 0.0400 0.0100 0.0200 49.9200
fnn-std [10] 0.2994 0.1799 0.1742 0.5300 0.2988 0.4024 0.1300 0.2049 68.3604
fnn-sc 0.0188 0.0164 0.0121 0.0509 0.0182 0.0338 0.0086 0.0154 50.1144
fnn-pc 0.2407 0.1751 0.1403 0.5134 0.2568 0.3884 0.1157 0.1981 61.4063
fnn-npc 0.5031‡ 0.3633‡ 0.2929‡ 1.0643‡ 0.5062‡ 0.7770‡ 0.2220‡ 0.3798‡ 71.4635
fnn-gnn-std 0.3975 0.2252 0.2318 0.6450 0.3967 0.5400 0.1745 0.2895 74.7247
fnn-gnn-sc 0.0188 0.0247 0.0110 0.0739 0.0197 0.0473 0.0089 0.0203 50.0975
fnn-gnn-pc 0.4721‡ 0.2007 0.2712 0.5822 0.4795 0.5182 0.2094 0.2840 74.6674
fnn-gnn-npc 0.5182‡ 0.3792‡ 0.2991‡ 1.0912‡ 0.5269‡ 0.8005‡ 0.2277‡ 0.3898‡ 75.9575
bnn-std [27, 48] 0.0285 0.0272 0.0179 0.0856 0.0289 0.0586 0.0138 0.0288 50.0227
bnn-sc 0.0356 0.0266 0.0225 0.0837 0.0357 0.0595 0.0171 0.0299 49.8803
bnn-pc 0.0268 0.0300 0.0166 0.0954 0.0272 0.0630 0.0133 0.0306 50.0703
bnn-npc 0.0369 0.0223 0.0233 0.0698 0.0388 0.0534 0.0188 0.0278 50.0220
bnn-gnn-std [47] 0.0210 0.0263 0.0120 0.0811 0.0215 0.0509 0.0096 0.0217 50.0061
bnn-gnn-sc 0.0356 0.0241 0.0234 0.0776 0.0366 0.0576 0.0184 0.0306 49.9698
bnn-gnn-pc 0.0293 0.0247 0.0180 0.0773 0.0284 0.0526 0.0126 0.0254 50.0863
bnn-gnn-npc 0.0310 0.0309 0.0195 0.0960 0.0308 0.0624 0.0144 0.0278 49.9071

imdb
%precision %recall %ndcg %map
@2 @10 @2 @10 @2 @10 @2 @10 %aucroc

random 0.1700 0.1800 0.0800 0.4500 0.1700 0.3100 0.0600 0.1200 49.8800
fnn-std [10] 0.9526 0.7750 0.4090 1.7625 0.9684 1.3405 0.3249 0.5839 58.9675
fnn-sc 0.2118 0.2093 0.1027 0.5234 0.2165 0.3692 0.0794 0.1534 50.2131
fnn-pc 0.9240 0.6878 0.3927 1.5619 0.9205 1.2018 0.3096 0.5329 54.8621
fnn-npc 0.9915‡ 0.8840‡ 0.4415‡ 2.0059‡ 1.0056‡ 1.5104‡ 0.3595 ‡ 0.6820‡ 63.0213
fnn-gnn-std 0.7319 0.6582 0.3376 1.5096 0.7449 1.1390 0.2645 0.5111 62.3177
fnn-gnn-sc 0.2326 0.2151 0.1154 0.5291 0.2429 0.3875 0.0915 0.1659 50.3146
fnn-gnn-pc 0.6645 0.6214 0.2991 1.3973 0.6645 1.0456 0.2277 0.4565 64.7053
fnn-gnn-npc 0.8150‡ 0.7408‡ 0.3555‡ 1.6556‡ 0.8162‡ 1.2426‡ 0.2686‡ 0.5317‡ 66.7753
bnn-std [27, 48] 0.2544 0.2481 0.1284 0.6062 0.2626 0.4375 0.1016 0.1859 49.7615
bnn-sc 0.1890 0.2450 0.0993 0.6145 0.1857 0.4070 0.0721 0.1630 50.0441
bnn-pc 0.1791 0.2149 0.0899 0.5177 0.1785 0.3553 0.0680 0.1431 50.1223
bnn-npc 0.2076 0.1983 0.0986 0.4871 0.2088 0.3488 0.0747 0.1462 49.9923
bnn-gnn-std [47] 0.1973 0.2030 0.1005 0.5029 0.2008 0.3557 0.0772 0.1495 50.0626
bnn-gnn-sc 0.1890 0.2471 0.0924 0.6003 0.1866 0.4062 0.0682 0.1595 50.0547
bnn-gnn-pc 0.1661 0.2424 0.0809 0.5944 0.1614 0.3922 0.0587 0.1508 50.0527
bnn-gnn-npc 0.1869 0.1900 0.0988 0.4896 0.1869 0.3393 0.0733 0.1424 49.9541

(*-sc) yields the best result across almost all increasing ratios of
ndkl, this has come at the cost of a substantial drop in the fnn’s
efficacy, as seen in Table 3, yielding its poor performance overall.
The parametric curriculum generally performs the same or worse
than the standard learning strategy, falling short of mitigating pop-
ularity bias either. From Figure 5 (right), the variational models
generally perform similarly with and without a curriculum. The
only marginal improvement is by the non-parametric curriculum
for gnn-based variational model in dblp dataset (dblp-bnn-gnn),
yielding less divergence but only for the desired ratios below 0.3.

Overall, our answer to RQ1 is affirmative as long as the under-
lying model structure is non-variational. However, for variation
models, we are reserved in giving a positive response, calling for
further research on developing curricula for variational models.

RQ2: Efficiency Improvement via Proposed Curricula: From
Figure 6 (left), we can observe that our non-parametric curriculum

in fnn-*-npc outperforms standard and other curriculum-based
learning strategies in fewer number of training epochs for non-
variational models in imdb in terms of ndcg@10, and the standard
learning strategy (*-std) is the runner-up. We cannot observe a
similar trend for parametric curricula, which further explains that
the parametric curriculum, in fact, needs more epochs to learn
not only the model’s parameters (𝜽 ) but also the parameters for
experts’ difficulty levels (𝝓). From the figure, the static curriculum
strategy (*-sc), as already evidenced in Table 3, shows the poorest
performance. From Figure 6 (right) and with respect to the training
efficiency of variational models, we clearly observe no gain. In
sum, our answer to RQ2 is affirmative but for the non-parametric
curriculum for non-variational models.

RQ3: Consistency of Curricula across Datasets: From Tables 3,
we see that non-parametric curriculum’s synergy to the perfor-
mance of feedforward neural models (fnn-*-npc) is agnostic to
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Figure 5: The comparative results of non-variational models fnn-* (left) and variational ones bnn-* (right) in mitigating
popularity bias in terms of ndkl@10 across increasing ratios of non-popular experts in recommended teams. The lower ndkl
indicates less divergence, and hence, the better.
the distributions of experts and skills in teams. More concretely,
for dblp with a long-tailed distribution of skills in teams and imdb
with a limited set of skills that are employed almost uniformly by
teams, we can see that the results of the non-parametric curriculum
are always superior for all the metrics compared to the standard
learning strategy in non-variational models (fnn-*). Variational
models’ benefit from the proposed curricula, however, depends
on the distribution of skills over teams. Contrary to dblp where
curriculum-based learning strategies marginally improved the re-
sults of the variational Bayesian model (bnn-*-pc and bnn-*-npc
vs. bnn-*-std), we can observe little to no improvement in imdb.
In conclusion, the answer to RQ3 is positive for non-parametric
curriculum utilized by non-variational models. However, for varia-
tional models, the answer is negative for our proposed curricula.

RQ4: Comparing Curriculum-based Strategies: As seen in Ta-
ble 3, the non-parametric curriculum has consistently performed
better compared to the parametric one. As previous studies showed,
while parametric curricula have been successfully applied in chal-
lenging classification tasks, they add running overheads; they de-
mand more learning epochs for learning the parameters associated
with the difficulty (popularity) levels of the experts, which would
come at the cost of overfitting for the model’s parameters [5]. Addi-
tionally, as such parameters are assigned on a per-expert basis, the
parametric curriculum yields more model complexity for a larger
pool of experts, raising scalability concerns in real-world applica-
tions. However, our non-parametric curriculum eliminates the need
for learning extra learnable parameters by taking conservative steps
and choosing the worst difficulty level for an expert for a given loss
value. Our static curriculum is the least effective, as it overlooks
the feedback from the model during learning and cannot adjust its
predefined difficulty measurer.

In terms of neural model architecture, Table 3 further shows
that our proposed curricula have been less effective for variational
Bayesian models (bnn-*) compared to non-variational neural mod-
els (fnn-*), which can be attributed to the probabilistic parameters
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Figure 6: Training efficiency vs. inference efficacy for non-
variational (left) and variational (right) in imdb.

of the variational models that confound learning or identifying the
difficulty (conversely, popularity) of an expert during learning iter-
ations for the same input team. An interesting avenue of research is
to develop variational parametric curricula to estimate the levels of
experts’ difficulty (popularity) based on a probability distribution
and study the impact when utilized by variational models. Overall,
our findings show that our proposed non-parametric curriculum
benefits non-variational neural models in terms of efficacy and
efficiency by addressing the popularity bias.

7 CONCLUDING REMARKS
In this paper, we proposed one static and two dynamic loss-based
curricula to improve the efficacy and efficiency of neural team
recommendation models in the presence of popularity bias. Our
experiment, when performed on two large-scale datasets with dis-
tinct distributions of teams over skills and experts, shows that our
proposed dynamic non-parametric curriculum improves the perfor-
mance of non-variational neural models for team recommendation
via mitigating popularity bias, surpassing other baselines across



datasets. Variational models, which learn probabilistic weights,
however, render the application of static and dynamic curricula
moot and ineffective. For future work, we seek to design curric-
ula for variational Bayesian neural architectures. We also aim to
expand our testbed to other domains, including uspt collection of
patents with similar distribution to dblp, and github collection of
software repos with similar distribution to imdb.
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