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ABSTRACT
We propose a neural embedding approach to identify temporally
like-minded user communities, i.e., those communities of users who
have similar temporal alignment in their topics of interest. Like-
minded user communities in social networks are usually identified
by either considering explicit structural connections between users
(link analysis), users’ topics of interest expressed in their posted
contents (content analysis), or in tandem. In such communities,
however, the users’ rich temporal behavior towards topics of inter-
est is overlooked. Only few recent research efforts consider the time
dimension and define like-minded user communities as groups of
users who share not only similar topical interests but also similar
temporal behavior. Temporal like-minded user communities find
application in areas such as recommender systems where relevant
items are recommended to the users at the right time. In this paper,
we tackle the problem of identifying temporally like-minded user
communities by leveraging unsupervised feature learning (embed-
dings). Specifically, we learn a mapping from the user space to
a low-dimensional vector space of features that incorporate both
topics of interest and their temporal nature. We demonstrate the
efficacy of our proposed approach on a Twitter dataset in the con-
text of three applications: news recommendation, user prediction
and community selection, where our work is able to outperform
the state-of-the-art on important information retrieval metrics.
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1 INTRODUCTION
User community detection is the process of finding latent commu-
nities of users whose members share higher intra-cluster similarity
compared to inter-cluster similarity. Community level methods
have shown to be more effective than their user level counterparts
in some application areas, e.g., in social recommender systems [16]
and information diffusion modeling [14], just to name a few.
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Figure 1: Different temporal inclination of three Twitter
users with respect to the ‘War in Afghanistan’ topic.

Early methods for community detection were primarily based
on the homophily principle [17] where densely connected groups
of users imply the existence of a community. To this end, primitive
graph structures such as components and cliques were considered
to be the representation of user communities [11]. However, these
methods fall short when the communities of interest need to take
users’ interest into account. This is mainly due to the fact that like-
minded users are not necessarily always connected to each other be-
cause in some cases explicit social network connections do notmean
that the two users share common interests and can merely denote
some social relation such as kinship. For this reason, irrespective
of the social network connections (structure), content (topic)-based
methods utilize the topical similarity of user-generated content to
detect like-minded communities of users [22, 27, 30]. There have
also been work that consider the integration of both social connec-
tions and users’ content for identifying user communities [8, 14, 37].

Several researchers have already explored the dynamic nature of
user’s interests on social networks [29, 35]. A user may become in-
terested in a new topic, lose interest in a topic, or change degree of
preference toward a topic over time [25]. For example, let us look at
two Twitter users @teerasay and @WingsofCrystal and how their
degree of interest towards the ‘War in Afghanistan’ topic changes
from mid November to the end of December 2010, as shown in
Figure 1. These two users seem to share a similar behavioral pat-
tern towards this topic. However, another user @ClaraListenspre
does not start posting about the same topic until much later in late
December of the same year. While the three users share a similar
interest, they do not exhibit this interest in similar time intervals.
Contemporary community detection methods, such as the afore-
mentioned methods, would cluster all these three users in the same
community because they do not incorporate the temporal nature
of users’ topics of interest. This renders it difficult for applications
such as news recommender systems to generate recommendations
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that are temporally sensitive. If the three mentioned users were
identified as members of the same community, they would be rec-
ommended the same news articles at the end of December on the
given topic while @teerasay and @WingsofCrystal have already
covered this topic in November and have now moved on and as a
result are not interested in it any longer but @ClaraListenspre
has just become interested in the topic.

More recently, two works have considered the issue of time-
aware (temporal) like-minded user community detection [9, 13]. To
include the temporal component, Fani et al. [9] have proposed a
multivariate time series representation of users in topic and time
spaces, while Hu et al. [13] have devised a unified probabilistic
generative model of both topics and users. In this paper, while
we follow the same underlying premise about temporality in like-
minded user community detection, we introduce a time-aware topic-
driven distributional representation (embedding) of users.

The concept of distributional representation has been explored
well beyond the domain of computational linguistics in a number
of different disciplines including graph analysis (node2vec [12] or
DeepWalk [23]), Genetics [3] and video analysis (frame2vec) [26],
just to name a few. In social network analysis, successful user em-
beddings into low-dimensional vector spaces have been attempted
such as author2vec [15] in citation networks as well as in tweet rec-
ommendation [31]. Basically, such user embedding models propose
that users with similar topics of interest should have similar embed-
dings. The main objective of our work is to identify like-minded
user communities whose members exhibit temporally similar be-
haviour toward similar topics of interest. Specifically, we would
like to embed those users who are interested in similar topics at
similar points in time, e.g., @teerasay and @WingsofCrystal, dis-
tant from those who have similar interest towards the same topics
but in different time intervals, e.g., @ClaraListenspre. Our pro-
posed temporal topic-driven user embedding model in this paper
represents a step forward with this respect. To this end, we build
documents whose elements are users not words. We extend the
concept of co-occurrence of words in documents to users and pro-
pose a new form of context for users such that two users co-occur if
they show the same interest toward the same topics in similar time
intervals. In order to illustrate the effectiveness of our proposed
approach, we perform experiments on a Twitter dataset from the
last two months of 2010. We evaluate our work on personalized
news recommendation, user prediction and community selection.
The experimental results show that our proposed approach outper-
forms the state of the art. Our main contributions in this paper are
as follows:

(1) We propose a novel temporal user embedding model which
learns low-dimensional user representations such that users
who exhibit similar temporal behaviour toward similar topics
are closer in vector space.

(2) We identify temporal like-minded user communities which
are both topically and temporally cohesive based on our user
embeddings.

(3) We demonstrate the performance of our temporally like-
minded user communities in the context of personalized
news recommendation, user prediction and community se-
lection compared to the state of the art.

The rest of the paper is organized as follows: we first present
the related works in Section 2, then we continue with the problem
definition. We propose our approach in Section 4. The experimental
setup and evaluation is described in Section 5, followed by conclud-
ing remarks in Section 6.

2 RELATEDWORK
The related works to this paper are largely centered around two
areas of user community detection and distributional semantics.

2.1 User Community Detection
User community detection is one of the well-explored research top-
ics in social network analysis; ranging from link (topology)-based
community detection methods, which rely only on the network
structure of the social network graph, to content (topic)-based ap-
proaches, which mainly focus on information content generated
by the users. A particularly large number of more effective ap-
proaches have been proposed which integrate both the network
structure (links) and content to improve community detection per-
formance [8]. All these works assume that the user’s topics of
interest remain stable across time. However, very few consider the
notion of temporality in users’ topics of interest [9, 13], particularly
in online social networks such as Twitter.

From among the work that consider temporality, Hu et al. [13]
have proposed a probabilistic generative model, namely Group
Specific Topics-over-Time (GrosToT), to simultaneously identify
both user communities and topics. The members of the identified
communities have temporal similarity with respect to the identi-
fied topics. The generative model has ex-ante knowledge about
the number of topics and communities. Each community is as-
sociated with a distribution over topics according to a Dirichlet
distribution (community-topic distribution), and for each specific
topic within the community, the temporal variation is obtained
by another Dirichlet distribution (community-topic-time distribu-
tion). Users belong to communities based on a Dirichlet distribution
(user-community distribution). A user selects a community based
on a multinomial distribution over her user-community distribu-
tion and generates documents (tweets) about each topic based on
her selected community-topic distribution in each time interval
according to the community-topic-time distribution. GrosToT is a
mixture model in which a user is interested in all the topics in all
time intervals and is member to all communities but with different
probabilities.

Contrary to the unified generative model, Fani et al. [9] have
proposed a framework to extract topics and user communities in
tandem. To extract user communities, they first build a multivariate
time series for each user in topic space within the time dimension
and, then, employ cross-correlation similarity of users’ time series
to capture the respective users’ temporal and topical similarities.
Finally, a graph-based clustering method is applied on a weighted
graph whose nodes are users and the weights are the users’ similar-
ity. While both of these works sketch different architectures, they
have shown competitive performance in modelling like-minded
user communities and to the best of our knowledge are the state of
the art in this respect; hence, we use them as our baselines.
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2.2 Distributional Semantics
The idea of distributional semantics states that words that occur in
similar contexts are semantically similar. Its recent neural model im-
plementation, namedword2vec byMikolov et al. [18], approximates
the semantics of a word with a dense low-dimensional vector (em-
bedding) so that the semantic similarity of words can be measured
in terms of geometric distance between the respective vectors. The
success of word2vec has extended beyond computational linguistics.
For example, node2vec [12] and DeepWalk [23] are inspired by the
skip gram model and employ a second order random walk to sam-
ple network neighborhoods for users (nodes) in the social network
structure. They output user vector representations (embedding)
that maximize the likelihood of preserving network neighborhoods
of users. While node2vec is amodal which only relies on the social
network graph structure, author2vec [15] is bimodal. It augments
the graph with user-generated textual contents to learn better user
embeddings. Author2vec includes content-info and link-info neural
models. The content-info model predicts whether a given user has
authored a given text and the link-info model predicts whether
a given pair of users are connected. Also, Benton et al. [4] have
proposed a variant of the generalized canonical correlation anal-
ysis (GCCA) to learn a single joint user embedding from each of
the given sources of information, namely, content and network
structure. None of the proposed user embedding models take the
time dimension into consideration. Although Benton et al. offer the
opportunity to integrate different information types, how tempo-
rality, which can be considered to be an aspect as opposed to a new
information type, can be integrated is not clear. In this paper, we
propose a novel way to incorporate user temporal content into a
distributional representation.

There are also some application specific research that employ an
existing technique, in one way or another, to produce user embed-
dings for downstream tasks such as gender prediction [7], sarcasm
detection [2], or scholarly microblog recommendation [31]. How-
ever, to the best of our knowledge, no approach investigates the
application of user embeddings for temporal like-minded user com-
munity detection purposes. The main objective of the user embed-
ding in this paper is to accurately identify temporally like-minded
user communities.

3 PROBLEM DEFINITION
Our goal is to identify like-minded user communities whose mem-
bers exhibit similar temporal dispositions towards similar topics.
Here, we provide a formal statement of the problem after which
we propose our approach in detail in the next section. We view
the problem of like-minded user community detection as an in-
stance of the set partitioning task on a set of users U. A partition
P of the set U of all users is a set of nonempty subsets of U as
communities such that every user u ∈ U is in exactly one of these
communities. Notationally, P = {C : C ⊆ U, |C| ≥ 1} such that
∀Ci ,Cj,i ∈ P : Ci ∩ Cj = � and

⋃
C∈P C = U. Since we do not

consider a set with one user as a community, we relax the partition
definition by assuming |C| ≥ 2 and drop the last union condition;
i.e., P∗ = P\ {C : |C| = 1}. The goal of like-minded user community
detection is to infer P∗ such that highly similar users are in the
same community C, yet users of high dissimilarity are in different

Figure 2: Points of temporal interest (PoTI) projected on the
user dimension for three sample Twitter users.

communities Ci and Cj,i . In our work, we consider two users to
be similar if they show similar temporal inclination towards a set
Z of possible topics.

4 PROPOSED APPROACH
Our proposed like-minded community detection method seeks to
find P∗ with respect to the temporal topic-based sense of user simi-
larity, defined in the previous section. The approach works through
three pipelined phases: temporal topic-based user modeling, user
vector representation (embedding), and user community detection.
In the following, we describe the details of each step.

4.1 Temporal Topic-based User Modeling
Our work relies on users’ behavior towards a set of topics within
time period T. To incorporate both users’ topics of interest and
temporality, for each user u ∈ U, we model her inclination towards
each topic z ∈ Z at each time interval 1 ≤ t ≤ L through a matrix.
The stacking of all user matrices will generate a cuboid denoted
as points of temporal interest (PoTI). An entry in PoTI shows how
much a user u ∈ U is interested in a topic z ∈ Z in time interval
1 ≤ t ≤ L.

Definition 4.1. Points of Temporal Interest (PoTI). Let U be
a set of users,M be the users’ posts corpus, Z be a set of topics, and
T be a time period broken down into L intervals, points of temporal
interest (PoTI) is a three dimensional matrix (cuboid) U × Z × T =
{yut [z]} where u ∈ U, z ∈ Z and 1 ≤ t ≤ L whose three dimensions
correspond to users, topics and time intervals, respectively and the
value yut [z] is the degree of u’s interest in topic z at time t .

Slices of PoTI made through the user dimension can be visualized
in the form of heatmaps as shown for three sample Twitter users
@teerasay, @WingsofCrystal and @ClaraListenspre in Figure
2. In this figure, the y-axis represents the topic indices, the x-axis
denotes the time intervals, and the cell values show the degree of
contribution of the user to that topic. For example, users @teerasay
and @WingsofCrystal heavily post about ‘War in Afghanistan’
(z44) in similar time intervals from mid to the end of November
whereas user @ClaraListenspre did not react to this topic until
the middle of the following month. From Figure 2, it is evident
that non-temporal topic-based approaches would group all these
three users in the same community and consider them like-minded,
because they are interested in the shared topic z44. However, user
@ClaraListenspre can be considered to be dissimilar from the
others because the period of time during which she reacts to z44 is
not the same as the other users.
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To instantiate PoTI, we need to find i) a set of topics that have
been observed in time period T, i.e., Z, and ii) each user’s degree
of interest at time t towards each topic z ∈ Z, i.e., yut [z]. The set
of possible topics can be derived by extracting the topics avail-
able in the collection of users’ posts using various existing topic
detection methods in the literature including topic modeling tech-
niques such as latent Dirichlet allocation (LDA) [5] as suggested
in [33, 34]. In order to identify the set of topics, we view all posts
of a user u ∈ U for each time interval t , i.e., mu

t ∈ M, as a sin-
gle document. A document m is a vector of N nonnegative inte-
gers, where the ith number shows the occurrence frequency of
the ith term. N is the size of the unique terms in all posts. Topic
z is a vector of N real numbers in range [0, 1], summing to 1. The
ith number shows the participation score of the ith term in form-
ing that topic. Collectively, Z = {z ∈ [0, 1]N : | |z | |1 = 1} is the
set of all topics. Topic distribution of a document is a function
f : M → [0, 1] |Z | ;∀m ∈ M, | | f (m)| |1 = 1. Intuitively, f maps a
document to a set of topics where f (m)z is the score of topic z for
documentm. Given the number of topics is known a priori, LDA
produces a topic set Z where each of its topics z is the multinomial
distribution of terms specific to topic z. Also, the topic distribution
function f is defined as a Dirichlet distribution with parameter α ;
notationally, f (m)z ∼ Dir (α)z .

4.2 User Vector Representation (Embedding)
The key contribution of this paper is to learn user vector repre-
sentations from users’ topics of interest with the expectation that
temporally like-minded users end up closer to each other in the vec-
tor space. We hypothesize that an appropriate embedding method
would bring significant performance into our main downstream
task of like-minded user community detection compared to the state
of the art. To build user embeddings, we first formally formulate
what we mean by a like-minded pair of users. Then, we propose
an embedding method which preserves pairwise like-minded prox-
imity of the users through maximizing the likelihood that two
like-minded users stay close to each other in vector space.

4.2.1 User Like-minded Context Model. In our approach, users
would be considered to be like-minded if they share similar tem-
poral and topical interest. More formally, the more two user u1
and u2 share instances of yu1t [z] ≃ yu2t [z] in the PoTI for topics
z ∈ Z across different time intervals 1 ≤ t ≤ L, the more sim-
ilar they would be. To illustrate an example, let us view Figure
3a where we show a region of PoTI for our three sample Twit-
ter users with {u1 = @teerasay,u2 = @WingsofCrystal,u3 =
@ClaraListenspre} × {z40, ..., z45} × {t20, ..., t30}. As defined ear-
lier in Section 4.1, the values of each cell of a PoTI are topic dis-
tribution scores normalized in the range of [0, 1]. As seen in the
figure, there are very few, if any, corresponding cells that share
the same value; therefore, it is very difficult to find users that have
the exact same topic interest, in the exact same time, to the exact
same extent. However, it is possible to relax the similarity con-
dition to consider corresponding cells that are within a certain
range to be similar. We refer to this relaxed condition as the con-
dition of homogeneity. For the purposes of illustration, here we
assume cells with values less than 0.1 represent insignificant levels

of interest, signified by gray, and hence, set our condition of homo-
geneity to encompass values within the range [0.1, 1]. As shown
in Figure 3a, the first two users @teerasay and @WingsofCrystal
share four similar regions in which instances of similar temporal-
topical interest happen: {u1,u2} × {z43, z44} × {t20, t22}, {u1,u2} ×
{z40} × {t22, t27}, {u1,u2} × {z44, z45} × {t26}, {u1,u2} × {z44} ×
{t23, t24, ..., t30}, {u1,u2}×{z40, z45, z46}×{t22}, which indicate that
@teerasay and @WingsofCrystal are like-minded both in time and
topic within these four regions. However, @ClaraListenspre only
shares one region with @WingsofCrystal, i.e., {u2,u3} × {z43} ×
{t24, t25}, and none with @teerasay. Indeed, @ClaraListenspre
is interested in the same set of topics but in different time inter-
vals {t40, ..., t60} as shown in Figure 3b. So, within the context
of our work, we are interested in a model that would determine
@teerasay and @WingsofCrystal to be similar users and distant
from @ClaraListenspre.

Now, in order to be able to develop a notion of similarity between
users, we learn user embeddings such that users that have amaximal
number of shared regions are placed close to each other in the
embedding space. The shared regions; therefore, present a sense of
context for our users. For example, in Figure 3a, the four regions
shared by the two users @teerasay and @WingsofCrystal provide
a context for incorporating the two users in the embedding space.
In order to be able to use the shared regions as context, we first
introduce a deterministic algorithm to find all these regions as an
input to our embedding method. We wish to learn an embedding for
users such that the representation of a specific target user can be
determined by other users in the same context. Let us now formalize
this process:

Definition 4.2. Region of Like-mindedness (RoL). A three-
dimensional subspace of PoTI, such as R, is defined to be a region of
like-mindedness (RoL) iff (i) all the values in this subspace are equal
with respect to a certain condition of homogeneity c; notationally,
∀y,y′ ∈ R; c(y) = c(y′) and (ii) it is maximal such that there exists
no other region of like-mindedness such as R’ which subsumes R.

To find all regions of like-mindedness, RoLs, in PoTI, we adopt a
similar strategy to [36] where subspace submatrices are mined from
three-dimensional gene-sample-time gene expression microarrays.
First, we find the RoLs in user and topic dimensions at each time
interval. The output is two-dimensional (2-d) RoLs indexed by the
time interval 1 ≤ t ≤ L, i.e., RoLt . Then, we merge RoLt of different
time intervals to build the required RoLs. The details are as follows:

Finding 2-d RoLs for the time interval t. Given the PoTI and
a condition c for homogeneity, let zi , zj ∈ Z be any two topic rows
with 1 ≤ i ≤ j ≤ |Z| in the time interval t and let yut [zi ] and y

u
t [zj ]

be the degree of interest of user u with respect to topics zi and
zj where u ∈ U. We define Utzi ,zj (c) to be the set of users whose
interest towards zi and zj satisfies the condition of homogeneity
c . Utzi ,zj (c) is maximal with regard to c if we cannot add another
user to it while respecting c . GivenUt = {Utzi ,zj (c) : zi , zj ∈ Z},
we construct a directed multigraph Gt = (V,E), where V = Z and
E = Ut , i.e., for each Utzi ,zj (c) ∈ U

t there exists a directed edge
(zi → zj ) labeled with the set of users in Utzi ,zj (c). For example,
Figure 4a shows the multigraph G22 constructed from Figure 3a
for time t22 where the condition of homogeneity c is satisfied if
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Figure 3: The points of temporal interest (PoTI) in Figure
2 with: (a){u1 = @teerasay,u2 = @WingsofCrystal,u3 =
@ClaraListenspre} × {z40, ..., z45} × {t20, ..., t30},
(b){@ClaraListenspre} × {z40, ..., z45} × {t50, ..., t60}.

the cells have a value in the range [0.1, 1.0]. To illustrate that there
may be parallel edges, we show how the same graph would look
like if the condition c was set such that it would be satisfied if
the difference of values fell in the range [0, 0.1). Figure 4b shows
G22 for this condition. As seen, values in the RoL {u1} × {z43, z44}
and {u2} × {z43, z44} satisfy the latter condition of homogeneity
separately.

To find the final 2-d RoLs for time t , we apply depth-first-search
(DFS) on the multigraph Gt based on the pseudo code described
in Algorithm 1. We start with a 2-d RoL r = U × �; all users U,
but no topics since no node (topic) has been processed yet and
C = [z1, z1, z2, z2, ..., z |Z | , z |Z |] as the set of all initial nodes (topics)
to be processed. Here,C includes duplicated initial topics to support
for directed loops on each node. At each intermediate recursive
call, we have a current candidate 2-d RoL r = A × B and a list of
not yet processed topics C . We add r into an initially empty set Rt
if it satisfies c and is not already contained in some RoL r ′ ∈ Rt .
Then, we remove any 2-d RoL r” ∈ Rt , which has already been
subsumed by r (lines 2-6). We expand the current candidate r from
each of its old topics zi to a new topic zj if there is a directed edge
(zi → zj ) ∈ U

t . Then, the function is called on the new candidate
{r .A ∩ Utzi ,zj } × {r .B ∪ {zj }} (lines 7-15).

For example, let us consider how the 2-d RoLs are identified
from the multigraph G22 shown in Figure 4a. Initially the algo-
rithm starts with the candidate 2-d RoL r = {u1,u2,u3} × �,C =
[z40, z40, z41, z41, ..., z45, z45]. We pop node z40 and recursively call

Figure 4: An examplemultigraph (G22) constructed fromFig-
ure 3a for time t22 if the condition c is satisfied when: (a) a
value falls within the range [0.1, 1.0], (b) the difference of val-
ues falls in the range [0, 0.1).

Algorithm 1 Finding 2-d RoLs for time interval t
Inputs:

users U, topics Z, homogeneity condition c , multigraph Gt
Initialization:
Rt = �

find_2d_RoLs(r = U × �,C = [z1, z1, z2, z2, ..., z |Z | , z |Z |])
Output: 2-d RoLs in Rt

1: procedure find_2d_RoLs(r = A × B,C)
2: if (r |= c) ∧ (�r ′ ∈ Rt : r ⊂ r ′) then
3: for all r” ∈ Rt do
4: if r” ⊂ r then
5: Rt ← Rt \ r”
6: Rt ← Rt ∪ r
7: for all zj ∈ Z do
8: A← r .A;B ← r .B ∪ zj ;C ← C \ zj
9: if r .B = � then
10: find_2d_RoLs(A × B,C)
11: else
12: for all zi ∈ r .B do
13: for all (zi → zj ) ∈ G

t .E do
14: A← r .A ∩ Utzi ,zj
15: find_2d_RoLs(A × B,C)

the function on r = {u1,u2,u3}×{z40},C = [z40, z41, z41, ..., z45, z45]
(line 10). Since {u1,u2,u3} × {z40} does not satisfy condition c , we
continue by popping a new node (topic) which is again z40. There
is only one directed edge (loop) from z40 → z40, so we obtain a new
candidate (line 14) and call the function on r = {u1,u2}×{z40},C =
[z41, z41, ..., z45, z45] (line 15). Now, the input r satisfies c and we
add it to the thus far empty R22 (line 6). Next, we pop z41 and there
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is a directed edge from z40 → z41 with U22z40,z41 = {u2}. So we call
the function on r = {u2} × {z40, z41},C = [z41, ..., z45, z45] which
leads to a new element in R22.

Finding regions of like-mindedness (RoL).Once the sets Rt
of 2-d RoLs for each time interval t have been extracted, we use
them tomine the desired RoLs.We employ a similar process as in 2-d
RoLs to find RoLs. We build a multigraph G = (V,E) whose nodes
are the time intervals: V = {t1, t2, ..., tL} and the edges include
directed links between time intervals such as (ti → tj ) only if there
exists two 2-d RoLs r ∈ Rti and r ′ ∈ Rtj such that {r .A ∩ r ′.A} ×
{r .B ∩ r ′.B} × {ti , tj } satisfies the condition of homogeneity c . We
start with the RoL R = A × B × C initialized as U × Z × � and a
list of not yet processed time intervals D = [t1, t1, t2, t2, ..., tL, tL].
Again each time interval is duplicated to support loop edge ti → ti .
We expand the intermediate candidate R from each of its old time
intervals ti to a new time interval tj if there is a directed edge (ti →
tj ) ∈ G.E. Then, we recursively continue with the new candidate
R = A×B ×C asA← R.A ∩ {r .A ∩ r ′.A}, B ← R.B ∩ {r .B ∩ r ′.B},
and C ← R.C ∪ tj where ti ∈ R.C and r ∈ Rti and r ′ ∈ Rtj are 2-d
RoLs for time intervals ti and tj , respectively.

Finally, we end up with the set R of all RoLs whose elements
R = A × B × C show that users u ∈ A ⊆ U have a similar degree
of interest towards the topics z ∈ B ⊆ Z within the time intervals
1 ≤ t ≤ L ∈ C , which serve as the required context of our model.
Users who are placed in similar RoLs are considered to be similar;
therefore, the more two users are seen in the same RoLs with each
other, the closer they should be to each other in the embedding
space. On the basis of this context model, the next step is to learn
vector representation for each user.

Time complexity analysis. In each time interval t , it takes
O(|U|×|Z|2) to calculateUtzi ,zj (c) for all pairs of zi , zj ∈ Z and build
the multigraph Gt considering the fact that testing the condition of
homogeneity can be done in O(1). Furthermore, performing depth-
first-search (DFS) on the graph to find 2-d RoLs takes O(|U| |Z |) in
the worst case, which happens when there exists an edge between
each pair of zi and zj associated with Utzi ,zj (c) containing only one
user. The analysis of the time complexity for finding RoLs is similar
but in the context of the number of time intervals and the number
of identified 2-d RoLs in the former step. Here, for each pair of time
intervals ti and tj , and a pair of 2-d RoLs, we test the condition
of homogeneity which would take O(|r | × L2) plus a final DFS in
O(|r |L) where |r | is the number of all 2-d RoLs. As seen, the most
expensive parts are the DFS traversal on the multigraphs in the
first and second steps which highly depend on the condition for
homogeneity c . Nevertheless, our algorithm is empirically efficient
since:

(1) PoTI is inherently sparse. Users are interested in small sets
of topics of interest. As a result, the average number of edges
in the multigraphs drops significantly and the DFS time ap-
proaches linear complexity due to the sparsity of the graph.

(2) The depth of the search in DFS is likely to be small in practice
because the number of topics and time intervals are far fewer
than the number of users, i.e., |Z| ≪ L ≪ |U|.

(3) The proposed algorithm is inherently parallelizable over time
intervals.

Figure 5: The neural network architecture.

4.2.2 User Embedding. Given a set of discovered regions of like-
mindedness (RoLs), the context for a user u would be the set of
users in each of the RoLs where u had been observed. We formulate
user vector learning as a maximum likelihood (ML) optimization
problem. In particular, for each user, we find her like-minded users
by optimizing the conditional probability of observing users that
have the same RoLs as her. To induce the user embeddings, we
adopt an approach similar to [18] as follows:

Definition 4.3. (Embedding Objective) Given the set R of all
regions of like-mindedness (RoLs), the embedding functionд : U→
[0, 1]d maps each user u ∈ U onto a d-dimensional space, such that
the following objective is optimized:

argmax
д

∑
R∈R,u ∈R

log Pr(u |R \ u) (1)

In order to make the optimization tractable, we assume condi-
tional independence for observing users in a RoL such as R. So,

Pr(u |R \ u) =
∏

v ∈R\u

Pr(u |v) (2)

To learn the user embeddings, we use a single hidden layer, fully
connected neural network. The architecture of our neural network
is shown in Figure 5. The hidden layer h is of size d , the dimension-
ality of the resulting user vectors, and the input and output layer is
set to have as many neurons as |U|. Thus, the input to hidden layer
connections can be represented by matrixW of size |U| × d with
each row representing a vector for user u ∈ U. The input layer x
is a one-hot encoded vector and the hidden layer’s neurons are all
linear such that h =W⊤x. Given a user v in the input layer that
is taken from the context of u, i.e., u and v have been observed in
the same RoL, h is the transpose of v’s corresponding row in W
named vv . In the same way, the connections from hidden layer to
output layer can be described by matrix W′ of size d × |U|. The
prediction task could be done via a softmax function to approximate
the probability of observing the target user u given user v from the
same RoL, i.e.,

Pr(u |v) =
exp(v′⊤u h)∑

w ∈U
exp(v′⊤w h)

=
exp(v′⊤u vv )∑

w ∈U
exp(v′⊤w vv )

(3)
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where v ′u is u’s corresponding column of matrix W′. With the
assumption in Equation 2 and the above probability function, the
objective function in Equation 1 simplifies to:

argmax
д

∑
R∈R,u ∈R

[ ∑
v ∈R\u

[
(v′⊤u vv ) − log

∑
w ∈U

exp(v′⊤w vv )
] ]

(4)

However, the formulation is computationally intractable as its
time complexity is proportional to the size of U. Morin and Ben-
gio [20] have proposed hierarchical softmax to approximate the
full softmax efficiently in practice. Accordingly, instead of a matrix,
the hidden layer to output layer connection is a binary Huffman
tree where leaves correspond to users. The probability of a user is
estimated by the unique path from the root to her corresponding
leaf. Therefore, the complexity of calculating softmax probabilities
drops from O(|U|) to O(loд(|U|). We refer the reader to [18] for
further details.

Our neural network is trained using stochastic gradient descent
and updatesW andW′ gradually via backpropagation. After the
training converges, each row of W represents the d-dimensional
user embeddings.

4.3 User Community Detection
Given the user embeddings, we identify communities of users
through graph-based partitioning heuristics. We represent users
and their pairwise similarities through a weighted undirected graph.
Precisely, let G = (V,E, s) be a weighted user graph in time period
T such that V = U,E = {eu,v : ∀u,v ∈ U} and the weight function
s : E→ [0, 1] is the cosine similarity of embeddings for the incident
users of an edge defined as s(eu,v ) = vu ·vv

| |vu | |2 | |vv | |2
. After construct-

ing the user graph G for a given time period T, it is possible to
employ a graph partitioning heuristic to extract clusters of users
that form latent communities. We leverage the Louvain method
(LM) [6] as it introduces linear heuristics to the problem of graph
partitioning. The output is a set of induced subgraphs such as G[C]
whose vertex set C ⊂ V and edge set consists of all of the edges in E
that have both endpoints in C. Subgraph G[C]with |C| ≥ 2 form an
instance of temporal like-minded user community assuming C ∈ P∗.
The application of graph partitioning algorithms on G will produce
temporal user communities P∗ that consist of like-minded users
who have contributed to the same topics with similar temporal
behavior and contribution degrees.

5 EXPERIMENTAL SETUP AND EVALUATION
5.1 Dataset
In our experiments, we use a publicly available Twitter dataset col-
lected and published1 by Abel et al. [1]. It consists of approximately
3M tweets posted by 135,731 unique users between November 1 and
December 31, 2010. In addition to its text, each tweet includes user
id and timestamp. The whole two months time period is sampled
on a daily basis, i.e., L = 61 days.

5.2 Setup
Our proposed approach consists of three phases to identify tempo-
rally like-minded user communities; finding topics, building user

1www.wis.ewi.tudelft.nl/umap2011/

Figure 6: User distribution for the output communities of
our approach and the baselines.

vector representations, and detecting user communities. Here, we
provide the implementation details and the setup of our approach
in each of these phases.

5.2.1 Finding topics. Extracting topics from tweets suffers from
the sparsity problem when topic modeling methods such as LDA
are used [32]. As suggested in [33, 34], we annotate each tweet with
entities defined in Wikipedia to obtain better topics from Twitter
with no change in the underlying topic detection methods. For in-
stance, for a tweet such as ‘NATO Leaders Seek Time on Afghan Exit
Strategy - http://nyti.ms/cMMDuR’, a semantic annotator such as
TagMe [10] is able to identify and extract several Wikipedia entities,
namely ‘NATO’2, ‘Afghan’, and ‘Exit_Strategy’. Using entities in-
stead of words can lead to the reduction of noisy content within the
topic detection process, because each concept implicitly represents
a collection of typical terms which are collectively more meaning-
ful than a single word or a group of less coherent words [24]. We
annotated the text of each tweet with Wikipedia entities using the
TAGME RESTful API3, which resulted in 350,731 unique entities.

In order to find topics of interest in our dataset, we have applied
MALLET4 for LDA. LDA-based approaches to topic detection need a
priori knowledge for the number of topics. The number of topics has
been already investigated and set to 50 for the same tweet dataset
by other researchers in [9]. We populate the points of temporal
interest (PoTI) for our topic set Z on a daily basis, i.e., L = 61 days,
and screen out values less than 0.1. The condition for homogeneity
c is set such that the difference of values falls in the range [0, 0.1).

5.2.2 Building user vector representation. We extended CBOW
architecture in Gensim5 to learn user embeddings as already intro-
duced in this paper. The training phase uses a learning rate of 0.025
and in each epoch we decrease it by 0.002 for 200 epochs. We per-
form the experiments on different vector sizes ofd = 100, 200, ..., 500
in an increasing order till we see no further performance gain.

2en.wikipedia.org/wiki/NATO
3services.d4science.org/web/tagme/documentation
4mallet.cs.umass.edu/topics.php
5radimrehurek.com/gensim/models/word2vec.html
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5.2.3 Detecting user communities. Webuild temporal topic-based
communities according to our proposed approach in Section 4.3.
We build the weighted graph G and apply the Louvain method with
resolution parameter 0.1 using Pajek6. This leads to our temporal
topic-based communities P∗.

5.3 Baselines
We compare our work against the following baselines whose details
has been already given in the related work section:

Fani et al. [9]. This approach models user’s contributions to-
ward the topics of interest through a multivariate time series. We
use LDA in its topic detection step with 50 topics and build the time
series for daily time intervals L= 61 days in its user modeling step.
The approach uses two dimensional cross correlation to measure
the similarity of a pair of users’ time series. We use the implemen-
tation in MATLAB7 for calculating time series cross-correlation.
Finally, we use the Louvain method in Pajek for its community
detection step as proposed by the authors.

Hu et al. [13] . This is a parametric unified probabilistic gen-
erative model for topics and communities. The number of topics
is set to 50 and we perform experiments on increasing number of
communities for C = 5, 10, ..., 30 till we see no performance gain.
The number of iterations is set to 1,000. This method is a mixture
model in which all users are members of all communities with a
probability distribution. In our comparison, we only consider the
community with the highest probability as each user’s community.

Figure 6 provides an overview of the distribution of users across
different communities. For Hu et al.’s work, the number of commu-
nities needs to be specified as shown ranging from 5 to 30. For our
proposed approach, the number of communities is automatically
determined by the graph partitioning method; however, the size of
the embeddings needs to be provided, which has been set from 100
to 500. As seen in the figure, our proposed method leads to a more
fair distribution of users across communities while the two baseline
methods have a higher skewness in the distribution of users in
their identified communities. While this by itself is not a measure
of community quality, as we will show later, disproportionate dis-
tribution of users in communities could lead to poor application
level performance.

5.4 Evaluation Protocol and Gold Standard
On the one hand, contrary to typically small scale networks or
synthetic ones, gold standard communities for real social networks
are not available. So, well-defined quality measures such as Rand
index, Jaccard index, or normalized mutual information (NMI) that
require comparison to a gold standard are not applicable. On the
other hand and in the absence of a golden standard, quality func-
tions such as modularity are not helpful either since they are based
on the explicit links between users, which are not applicable to our
work. For instance, in the context of our work and the baselines,
a perfect community detection algorithm might have a low mod-
ularity value as those users that are deemed most similar might
not have explicit social connection with each other. Therefore in

6vlado.fmf.uni-lj.si/pub/networks/pajek/
7www.mathworks.com/help/signal/ref/xcorr2.html
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Figure 7: Comparative performance on the news recommen-
dation application.

our work, the communities that achieve high modularity are not
necessarily optimal from temporal and topical points of view [19].

Fortunately, the performance of community detection methods
can be measured through observations made at the application
level, as suggested in [14, 19]. In these evaluation strategies, a tem-
poral like-minded user community detection method is considered
better iff its output communities improve an underlying applica-
tion. We deploy three applications: news recommendation, user
prediction, and community selection. Note should be taken that
we do not attempt to improve the state of the art in any of these
three applications but rather to show that the application of the
proposed community detection method is able to provide a stronger
performance compared to the other two state of the art community
detection baselines.

To this end, we first build a gold standard dataset for the said
applications by collecting news articles to which a user has explic-
itly linked in her tweets (or retweets). We postulate that users post
news article urls since they are interested in the topics of those
news articles. Similar to tweets, we annotate news articles with
Wikipedia entities. We build the gold standard from a set of news
articles whose urls have been posted by useru at time t . We see each
entry as a triple (u,a, t) consisting of the news article a, user u, and
the time t . As a result,G = {(u,a, t) : u ∈ U,a ∈ A, 1 ≤ t ≤ L = 61}
forms our gold standard where U and A are sets of users and news
articles. The gold standard G consists of 25,756 triples extracted
from 3,468 distinct news articles posted by 1,922 users.

5.5 News Recommendation
Given the gold standard G and like-minded user communities P∗,
the objective in the news recommender application is to recommend
the right news articles to the users of communities in the correct
time. A right news article a to be recommended to a user u at
time t would be one that is included in the gold standard, that is,
(u,a, t) ∈ G. The news recommender application works according
to the following two steps:

(1) For each C ∈ P∗ and time interval 1 ≤ t ≤ L = 61, we
recommend all news articles a ∈ A in a ranked list based
on the similarity of the news article a and the community’s
overall topics of interest at the time t . The overall topic of
interest for each topic z ∈ Z in a community is the sum over
all entries in PoTI whose users belong to the community at
time t , i.e.,

∑
u ∈C y

t
u [z].
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Figure 8: Comparative performance on the user prediction.

(2) We recommend the news articles a ∈ A to a user u ∈ U
based on the same ranked list as her community’s list.

In our work, a desirable community is one whose members are
interested in the same topics of interest in the same time intervals.
As a result, ideally, at time t , a news article is about the same topics
of interest as the community’s overall interest iff all the members
post about the same or highly similar news articles.

We evaluate the ranked list of news articles for recommendation
by standard information retrieval metrics: mean reciprocal rank
(MRR) and success at rank k (S@k). The former is the inverse of
the first position that a correct item occurs within the ranked list
and the latter shows the probability that at least one correct item
occurs within the top-k items of the ranked list. In the following,
the three methods, namely our approach, Fani et al. [9], and Hu
et al. [13], are compared to each other in terms of MRR, S@1 and
S@10. Figure 7 summarizes the results.

As shown, our approach with different dimensions achieves bet-
ter performance compared with the approach proposed by Hu et
al. [13] and Fani et al. [9] in terms of S@1, S@10, and MRR. Also,
the results show that with d = 300 our approach reaches its best
performance. We attribute our better performance to the fact that
our embedding function preserves both topical and temporal prox-
imity of users more effectively and, consequently, the extracted
like-minded user communities capture temporal topic-based simi-
larity of users more coherently than the other two baselines.

5.6 User Prediction
Another application with which we evaluate our approach and the
baselines is the user prediction application. Given the gold standard
G and the like-minded user communities P∗, this time the goal is
to predict which users posted the news article a at time t . To do so,
we find the closest community to the news article in terms of topics
of interest at time t . Then, the members of such community would
constitute our prediction list. We employ precision, recall, and f-
measure to report user prediction performance. We summarize
the results for these metrics in Figure 8. As shown, in terms of
precision, our approach with all different dimensions except d =
100 outperforms all other baselines. In terms of recall, however,
Hu et al. [13] with C = 5 competes with our proposed approach
when d = 400. The reason for such high recall in Hu et al. with
C=5 can be attributed to the lower number of communities in this
method. The fewer the number of communities are, the higher the
recall of the method would be. In other words, if we only have
one community that includes all users, recall would be 1.0. As the

0

0.05

0.1

0.15

0.2
aNCCG

C
=
0
5

C
=
1
0

C
=
1
5

C
=
2
0

C
=
2
5

d
=
1
0
0

d
=
2
0
0

d
=
3
0
0

d
=
4
0
0

d
=
5
0
0

Hu et al.

F
a
n
i
 
e
t
 
a
l
.

Ours

Figure 9: Performance on community selection application.

number of communities increases from C = 10 to C = 30 in Hu
et al, recall decreases which supports our explanation. Overall, F-
measure shows the superiority of approach in user prediction in all
its variants except for d = 100, which is weaker than Fani et al.

5.7 Community Selection
In the realm of cluster-based information retrieval systems, the en-
tire collection of documents are split into clusters such that only the
documents in highly related clusters to a given query are accessed.
As a result, fewer documents are searched from within a large
collection of documents which results in improved response time.
Better clustering solutions in this context are those that can group
relevant documents for previously unseen queries. This approach is
referred to as collection selection and normalised cumulative cluster
gain (NCCG) [21] is a metric used for evaluating collection selection.
According to NCCG, the best clustering would be the one where
all the documents related to a given query are all located in the
same cluster. The worst clustering is the one where the relevant
documents to an input query are scattered across many clusters.
NCCG is the difference between the current clustering gain and
the worst possible, formulated as follows:

NCCG =
s − smin
1 − smin

(5)

where s =
|д |∑
cumsum(д)

n2 and д is a sorted gain vector whose ele-
ments represent each cluster’s gain, i.e., the number of relevant
documents in a cluster, n is the total number of relevant documents
and cumsum represents the cumulative sum of a vector. The worst
possible gain smin happens when the relevant documents to the
query are uniformly distributed over all clusters.

However, NCCG has been criticized for being sensitive to the
number of clusters and population distribution; therefore, De Vries
et al. [28] have proposed an adjusted version of NCCG (aNCCG), i.e.,
NCCG’s divergence from a randomnull basemodel, to alleviate such
problem. We employ aNCCG to evaluate the temporal and topical
coherence of the identified output communities of the different
approaches in the application of community selection as follows:
given a news article a at time t (the input query), we want to find
the communities of those users (similar to documents related to an
input query) who have mentioned the news article at that time. The
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output user communities are more effective iff users who mention
a news article a (topical) at time t (temporal) are all located in one
community instead of being distributed across several communities.
We report aNCCG for our approach and the baselines in Figure 9.

As seen in the figure, our approach, for different number of di-
mensions, outperforms the other two baselines in terms of aNCCG.
This means that, in our approach, the users who mention the same
news articles in specific time intervals are placed within similar user
communities, i.e., such users are distributed across fewer communi-
ties. A lower aNCCG value as exhibited by Hu et al. and Fani et al.
means that these methods distribute users that have posted similar
news articles at specific time intervals across a larger number of
user communities, which is not desirable.

6 CONCLUDING REMARKS
In this work, we have proposed a neural embedding approach to
identify temporally like-minded user communities, i.e., those com-
munities of users who have similar temporal alignment in their
topics of interest. We model the users’ temporal contribution to-
wards topics of interest by introducing the notion of regions of
like-mindedness (RoLs) between users. These regions cover users
who share not only similar topical interests but also similar tempo-
ral behavior. By considering the identified set of RoLs as context, we
train a neural network such that the probability of a user in a RoL is
maximized given other users in the same RoL. The final weights of
the neural networks form our low-dimensional vector representa-
tion of each user that incorporates both users’ topics of interest and
their temporal nature. Finally, we apply a clustering technique to
identify like-minded user communities on a weighted user graph in
which the similarity of two users is based on the cosine similarity
of their respective vectors. We demonstrate the effectiveness of
our approach on a Twitter dataset in the context of news recom-
mendation, user prediction, and community selection applications
compared to two state of the art baselines. Possible future direction
of our work includes the interpolation of our learnt user embed-
dings with neural embeddings learnt from a graph structure as in
node2vec [12] or DeepWalk [23] such that both temporal topics as
well as structural connections are considered when building user
embeddings.
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