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Due to this critical ethical issue in Al-based
decision making, in this work, we adopt a
various greedy reranking algorithms to
achieve fairness with respect to (1) o0 |
popularity or (2) gender in neural models in
view of two notions of fairness,
demographic parity and equality of

female/nonpopular experts.

2.\WWhen considering popularity as the protected
attribute, our findings confirm its influence.

3. We determined that while reranking methods can
be notably effective in addressing biases, their
efficacy diminishes when they are employed single-

nandedly. Specifically, when confronting extreme

niases in data, these methods struggle to rectify
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opportunity. expert -idx them without a consequential loss in utility.
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