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A Streaming Approach to Neural Team Formation Training
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5 MB hard drive being shipped by IBM - 1956.
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FORMING

A short-lived
phase; the Team
gets acquainted,
learns roles and
responsibilities.

STORMING

A challenging
period; as the
Team experiences
disagreements,
power struggles
and conflict
emerge.

Tuckman, Bruce W. "Developmental sequence in small groups.”

NORMING

The Team
discovers the light
at the end of the
tunnel, establishing
guidelines and
understanding
process.

The Team gets
it; collaborating,
anticipating and
adjusting. Work
is efficient, and
the Team is
motivated.

Psychological bulletin 63.6 (1965): 384.
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Conventionally Manual by a Human Selector:
o Large number of expert candidates

- Different background

- Different traits (night owls vs. early birds)

o Multitude criteria to optimize
- Budget/Salary
- Time/Availability
- Communication costs

o Biases
- Popularity
- Gender
- Race
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Definition 1 (Team). Given a set of skills S = {i} 8
and a set of experts £ = {j}, a team of experts e C -~

E; e # | that collectively cover the skill sets C S;
s # () is shown by (s, e) along with its success status
y € {0,1}. Further, T = {(s,e), : y € {0,1}}

indexes all previous teams.

L)

-
[

I\

~\ 4 v, h=7x(01vs +b1)
Definition 2 (Team Formation). Given a subset 0, 0, J B 1rs =51
of skills s and all teams T, the Team Formation logits — z = 02h + by
problem aims at identifying an optimal subset of i L /\ Ver= 0(2Z)
experts e* such that their collaboration in the pre- Of ©
dicted team (s, e*) is successful, that is (s,e*),—1, S|
while avoiding a subset of experts €' resulting in —
(s,€)y—0. More concretely, the Team Formation \Variational Bayegian 0| |€]
problem is to find a mapping function f of parame- S

ters 0 from the powerset of skills to the powerset of
experts such that fg : P(S) = P(E), fo(s) = ™.

Definition 3 (Neural Team Formation). Given argmaxg p(0|7) < p(77|0)p(0) = p(0) l_[ p(€ls, 0)
the training set T, Neural Team Formation esti- (s,€)eT "
mates fg(s) using a multi-layer neural network that
learns, from T, to map a vector representation of
subset of skills s, referred to as vg, to a vector repre-
sentation of subset of experts e*, referred to as v~ , els,0) = l—[ o(zlil) o< Z log o(z|i
by maximizing the posterior (MAP) probability of 6 P( | ) ( [J]) & ( []])
in fo over T, that is, argmax p(@|T).
()

ol 1O

jee* jEe*



Definition 1 (Team). Given a set of skills S = {i}
and a set of experts £ = {j}, a team of experts e C
E; e # | that collectively cover the skill sets C S;
s # () is shown by (s, e) along with its success status
y € {0,1}. Further, T = {(s,e), : y € {0,1}}

indexes all previous teams.



Definition 2 (Team Formation). Given a subset
of skills s and all teams T, the Team Formation
problem aims at identifying an optimal subset of
experts e* such that their collaboration in the pre-
dicted team (s, e*) is successful, that is (s,e*),—,
while _avoiding a subset of experts e’ resulting in
(s,€")y—0. More concretely, the Team Formation
problem is to find a mapping function f of parame-

ters 0 from the powerset of skills to the powerset of
experts such that fg : P(S) — P(E), fa(s) = e”.



Definition 3 (Neural Team Formation). Given
the training set T, Neural Team Formation esti-
mates fg(s) using a multi-layer neural network that
learns, from T, to map a vector representation of
subset of skills s, referred to as vg, to a vector repre-
sentation of subset of experts e*, referred to as v~ ,
by maximizing the posterior (MAP) probability of 6
in fo over T, that is, argmax p(@|7T).
e
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argmaxg p(0|7) o< p(77|0)p(0)
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h = 71'(91‘VS +b1)
logits —» z = 6;h + by

Ver= 0(2)
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Definition 3 (Neural Team Formation). Given argmaxg p(0|7°) « p(710)p(0) = p(0) l—[ p(€
the training set T, Neural Team Formation esti- (s,)eT "
mates fg(s) using a multi-layer neural network that
learns, from T, to map a vector representation of
subset of skills s, referred to as vg, to a vector repre-
sentation of subset of experts e*, referred to as v~ ,
by maximizing the posterior (MAP) probability of 6
in fo over T, that is, argmax p(@|7T).
e

s, 0)



Definition 3 (Neural Team Formation). Given
the training set T, Neural Team Formation esti-
mates fg(s) using a multi-layer neural network that
learns, from T, to map a vector representation of
subset of skills s, referred to as vg, to a vector repre-
sentation of subset of experts e*, referred to as v~ ,
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A Streaming Approach to Neural Team
Formation Training

Hossein Fani[0000_0002_6033_6564], Reza Bmzegar[0009—0002—2831—4143], Arman
DaShti[DODG_Dﬂol_9022_5403], and Mahdis Saeedi[0000—0002—6297—3794]

University of Windsor, Windsor, ON., Canada

{hfani, barzegar, vaghehd, msaeedi}@uwindsor.ca

, ) 3 Abstract. Predicting future successful teams of experts who can effec-

"“H__._. _/ tively collaborate is challenging due to the experts’ temporality of skill

4 \"'. f\/\ 4-| sets, levels of expertise, and collaboration ties, which is overlooked by

VI " Vj prior work. Specifically, state-of-the-art neural-based methods learn vec-
/ S 02 tor representations of experts and skills in a static latent space, falling

\ ] short of incorporating the possible drift and variability of experts’ skills

R“w—r.-::r /\ and collaboration ties in time. In this paper, we propose (1) a streaming-

' \ based training strategy for neural models to capture the evolution of

N/ O ] experts’ skills and collaboration ties over time and (2) to consume time

J information as an additional signal to the model for predicting future suc-

|5 ‘ cessful teams. We empirically benchmark our proposed method against

state-of-the-art neural team formation methods and a strong temporal

recommender system on datasets from varying domains with distinct dis-

Va ri a'l:i O n al B ayes i an 'O tributions of skills and experts in teams. The results demonstrate neural

|8 ‘ models that utilize our proposed training strategy excel at efficacy in

—_— terms of classification and information retrieval metrics. The codebase is
available at https://github.com/fani-lab/0peNTF/tree/ecir24.

|

Keywords: Neural Team Formation - Training Strategy - OpeNTF.
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Small vs. large set
o Dense Representation Learning

Small vs. large set - GNN-based (Rad et al. SIGIR 2021)
- Future RQ /)

Definition 1 (Téam). Given a set of skills S = {i}
and a set of experts £ = {7}, a team of experts e C
E; e # | that collectively cover the skill sets C S;
s # () is shown by (s, e) along with its success status
y € {0,1}. Further, T = {(s.e), : y € {0,1}}

indexes all previous teams.

What does it mean for a team to be successful?

Challenges ...
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Efficient estimation of word representations in vector space

Authors
Publication date
Journal

Description

Total citations

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean
2013/1/16
arXiv preprint arXiv:1301.3781

We propose two novel model architectures for computing continuous vector
representations of words from very large data sets. The quality of these representations
is measured in a word similarity task, and the results are compared to the previously best
performing techniques based on different types of neural networks. We observe large
improvements in accuracy at much lower computational cost, i.e. it takes less than a day
to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we
show that these vectors provide state-of-the-art performance on our test set for
measuring syntactic and semantic word similarities.

Cited by 40332

2014 2015 2016 2017 2018
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Tomas Mikolov https://openreview.net/forum?id=idpCdOWtgXd60

Yesterday we received a Test of Time Award at NeurlPS for the word2vec paper from ten years
ago. I'm really happy about it! | think it's the(first "best paper" type of award | ever received. In
fact, the original word2vec paper was rejected at the first ICLR conference in 2013 (despite the
acceptance rate of around 70%), so it made me think how difficult it is for reviewers to predict

future impact of research papers.
https://www.facebook.com/share/p/kXYaYaRvRCr5K2Ze

What is success?
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A Streaming Approach to Neural Team
Formation Training

Hossein Fanl[OOOO 0002—-6033—6564] Reza Barzegat[OOOQ 0002—-2831— 4143] Arman

Dasht][OOOO 0001—-9022—, 5403] and Mahdis Saeedl[OOOO 0002—6297— 3794]

University of Windsor, Windsor, ON., Canada
{hfani, barzegar, vaghehd, msaeedi}@uwindsor.ca

Abstract. Predicting future successful teams of experts who can effec-
tively collaborate is challenging due to the experts’ temporality of skill

Published

and collaboration ties in time. In this paper, we propose (1) a streaming-
based training strategy for neural models to capture the evolution of
experts’ skills and collaboration ties over time and (2) to consume time
information as an additional signal to the model for predicting future suc-
cessful teams. We empirically benchmark our proposed method against
state-of-the-art neural team formation methods and a strong temporal
recommender system on datasets from varying domains with distinct dis-
tributions of skills and experts in teams. The results demonstrate neural
models that utilize our proposed training strategy excel at efficacy in
terms of classification and information retrieval metrics. The codebase is
available at https://github.com/fani-lab/0peNTF/tree/ecir24.

Keywords: Neural Team Formation - Training Strategy - OpeNTF.
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(a) General trend (absolute).
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Temporal Evo

Barbara Liskov

Born Barbara Jane Huberman
November 7, 1939 (age 84)

Los Angeles, California, US
Alma mater University of California, Berkeley (BA)
Stanford University (PhD)

Known for Venus (operating system)
CLU
Argus
Thor (object-oriented database)
Liskov substitution principle

Spouse Nathan Liskov (1970-)

Computer Pioneer Award (2018)

Scientific career

Fields Computer science

lutions in Skills & Expert’s Skills
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Lafe McKee

(o)}
1

{ = Western
i ww = Action
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1933 -
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Temporal Evolutions in Skills & Expert’s Skills
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TEMPORAL LATENT SPACE MODELING
local Block Coordinate Gradient Descent (Zhu et al. TKDE 201 6)

T
are min [Z Z lw(u,v:t)— }’Mﬂl'ﬁ-
t=1 w.vel
-
+ /\Z Z(l — y;:f}‘r:—[!—lj }}

f=1 wuel

‘v'” € U-‘}r”r :2 ” }'ruifyt—lf_f - l

Fani et al. Temporal latent space modeling for community prediction. ECIR 2020

|. Introduction 2. Proposed Model 3. Evaluation
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Streaming Training Strategy
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Streaming Training Strategy
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Table 1: Statistics of the raw and preprocessed datasets.

dblp

uspt

imdb

gith

raw  filtered

raw filtered

raw filtered

raw filtered

Hteams
Hunique experts

4,877,383 99,375
5,022,955 14,214

7,068,508 152,317
3,508,807 12,914

507,034 32,059
876,981 2,011

132,851 11,312
452,606 2,686

Hunique skills 89,5604 29,661 241,961 67,315 28 23 20 19
avg #expert per team 3.06 3.29 2.51 3.79 1.88  3.98 0.92 7.53
avg #skill per team 8.97 9.71 6.29 9.97 1.54 1.76 1.37 1.57
avg #team per expert 2.97 23.02 9.05 44.69 | 1.09 6245 | 1.62 31.72
avg #skill per expert 16.73  96.72 19.49 102.53 | 1.59 10.85 | 2.03 5.18
#team w/ single expert| 768,956 0 2,578,898 0 322,918 0 0 0
#team w/ single skill 5,569 56 939,955 8,110 (315,503 15,180 | 69,131 6014
Timespan (raw) 1979 — 2018 1976 — 2019 1914 — 2020 2008 — 2022
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Table 1: Statistics of the raw and preprocessed datasets.

dblp uspt imdb gith

raw  filtered| raw  filtered| raw filtered| raw filtered
“teams 4,877,383 99,375 (7,068,508 152,317|507,034 32,059 132,851 11,312
#unique experts 5,022,955 14,214 (3,508,807 12,914 (876,981 2,011 |452,606 2,686
“unique skills 89,504 29,661 | 241,961 67,315 28 23 20 19
avg #expert per team - = . i F :
avg #skill per team @ e @b1P 100 | Pt ” o 1mdb gith
avg #team per EK]}EI't E E 187 X X XX XK MMORKOK| | 187 X XX MKOK X KX
avg #skill per expert # 10 16t | E
#team w/ single expert : . ) S | ] S —
H#team w/ single skill #teams. #fce;ams o “#teans “gteams

Timespan (raw) 1979 — 2018 1976 — 2019 1914 — 2020 2008 — 2022
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Table 1: Statistics of the raw and preprocessed datasets.

dblp uspt imdb gith

raw  filtered| raw  filtered| raw filtered| raw filtered
“teams 4,877,383 99,375 (7,068,508 152,317|507,034 32,059 132,851 11,312
#unique experts 5,022,955 14,214 (3,508,807 12,914 876,981 2,011 [452,606 2,686
#unique skills 89,504 29,661 241,961 67,315 28 23 20 19
avg #Hexpert per team 3.06 3.29 2.01 3.79 1.88 3.98 0.02 7.93
avg #skill per team 8.97 9.71 6.29 9.97 1.54 1.76 1.37 1.57
avg #team per expert 2.97 23.02 0.05 44.69 | 1.09 6245 | 1.62 31.72
avg #skill per expert 16.73  96.72 19.49 10253 | 1.59 10.85 | 2.03 5.18
H#team w/ single expert| 768,956 0 2,578,898 0 (322918 O 0 0
H#team w/ single skill 5,569 56 939,955 8,110 |315,503 15,180| 69,131 6014

Timespan (raw) 1979 — 2018 1976 — 2019 1914 — 2020 2008 — 2022



35

RQ1: Does moving embeddings of experts and skill through time in the latent
space improve the performance of neural models for the prediction of future
successful teams?

RQ2: Does adding time explicitly to the input embeddings of skills boost
neural models performance?

RQ3: Is the impact of our proposed training strategy consistent across
datasets from various domains with distinct statistical distributions?
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Low values of evaluation metrics for practical application
- Primarily due to the simplicity of the architectures

- Small number of epochs

Our main goal is not to report state-of-the-art results for a novel model
But to showcase the synergistic effects of streaming training strategy
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RQ1: Randomly Shuffled vs. Streaming?

Variational Bayesian neural network with streaming (tbnn-*) and lack thereof (bnn-*)



Table 2: Average performance of 5-fold neural models on the test set.

38

wpr2  %pr5 prioO %recl0 Yndcg2 Yndcgh YndcglO %map2 %mapl0 %aucroc
bnn [3€] 0.0570 0.0663 0.0710|0.0351 0.0993 0.2118|0.0538 0.0806 0.1330 |0.0242 0.0411 0.0558 | 63.52
bnn_emb [35] 0.1124 0.1290 0.1251 | 0.0668 0.1909 0.3699 | 0.1083 0.1555 0.2397 | 0.0474 0.0792 0.1033 | 66.81
rrn [44] 0.0570 0.0391 0.0472 | 0.0380 0.0630 0.1552|0.0478 0.0523 0.0959 |0.0217 0.0281 0.0446 | 50.73
tbnn 0.1189 0.1413 0.1664 | 0.0706 0.2090 0.4984 | 0.1126 0.1689 0.3031 | 0.0484 0.0845 0.1223 | 73.08
tbnn_emb 0.2996 0.2938 0.2811 | 0.1816 0.4433 0.8431 | 0.3048 0.3860 0.5721 |0.1411 0.2095 0.2635| 74.83
tbnn_dt2v_emb 0.4299 0.3973 0.3612(0.2601 0.5963 1.0801|0.4284 0.5221 0.7465 [0.1947 0.2864 0.3520| 77.01

bnn [3€] 0.0657 0.0769 0.0910 | 0.0353 0.0976 0.2212 | 0.0655 0.0883 0.1481 |0.0266 0.0433 0.0592 | 64.54
bnn_emb [35] 0.3663 0.4123 0.3748 | 0.1608 0.4509 0.8141|0.3652 0.4531 0.6094 |0.1212 0.2027 0.2583 | 69.85
rrn [44] 0.0239 0.0383 0.0654 | 0.0140 0.0500 0.1370 | 0.0221 0.0408 0.0868 |0.0096 0.0186 0.0340| 51.60
tbnn 0.1843 0.1841 0.2029 | 0.0933 0.2321 0.5158 | 0.1794 0.2152 0.3481 | 0.0681 0.1056 0.1429 | 75.44
tbnn_emb 0.8272 0.7539 0.7042 | 0.3970 0.9021 1.6933 | 0.8457 0.9057 1.2657 |0.3104 0.4533 0.5679| 83.59
tbnn_dt2v_emb 1.2268 1.0583 0.9324|0.6037 1.2928 2.2518|1.2322 1.2960 1.7348 |0.4626 0.6659 0.8118| 85.34
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RQ2: Adding timestamp boosts performance?

Temporal skills in the input tbnn_dt2v_emb and lack thereof



Table 2: Average performance of 5-fold neural models on the test set.
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wpr2  %pr5 prioO %recl0 Yndcg2 Yndcgh YndcglO %map2 %mapl0 %aucroc
bnn [3€] 0.0570 0.0663 0.0710|0.0351 0.0993 0.2118|0.0538 0.0806 0.1330 |0.0242 0.0411 0.0558 | 63.52
bnn_emb [35] 0.1124 0.1290 0.1251 | 0.0668 0.1909 0.3699 | 0.1083 0.1555 0.2397 | 0.0474 0.0792 0.1033 | 66.81
rrn [44] 0.0570 0.0391 0.0472 | 0.0380 0.0630 0.1552|0.0478 0.0523 0.0959 |0.0217 0.0281 0.0446 | 50.73
tbnn 0.1189 0.1413 0.1664 | 0.0706 0.2090 0.4984 | 0.1126 0.1689 0.3031 | 0.0484 0.0845 0.1223 | 73.08
tbnn_emb 0.2996 0.2938 0.2811 | 0.1816 0.4433 0.8431 | 0.3048 0.3860 0.5721 |0.1411 0.2095 0.2635| 74.83
tbnn_dt2v_emb 0.4299 0.3973 0.3612(0.2601 0.5963 1.0801|0.4284 0.5221 0.7465 [0.1947 0.2864 0.3520| 77.01

bnn [3€] 0.0657 0.0769 0.0910 | 0.0353 0.0976 0.2212 | 0.0655 0.0883 0.1481 |0.0266 0.0433 0.0592 | 64.54
bnn_emb [35] 0.3663 0.4123 0.3748 | 0.1608 0.4509 0.8141|0.3652 0.4531 0.6094 |0.1212 0.2027 0.2583 | 69.85
rrn [44] 0.0239 0.0383 0.0654 | 0.0140 0.0500 0.1370 | 0.0221 0.0408 0.0868 |0.0096 0.0186 0.0340| 51.60
tbnn 0.1843 0.1841 0.2029 | 0.0933 0.2321 0.5158 | 0.1794 0.2152 0.3481 | 0.0681 0.1056 0.1429 | 75.44
tbnn_emb 0.8272 0.7539 0.7042 | 0.3970 0.9021 1.6933 | 0.8457 0.9057 1.2657 |0.3104 0.4533 0.5679| 83.59
tbnn_dt2v_emb 1.2268 1.0583 0.9324|0.6037 1.2928 2.2518|1.2322 1.2960 1.7348 |0.4626 0.6659 0.8118| 85.34
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RQ3: Is the impact consistent across datasets?

dblp, uspt vs. imdb, gith
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bon [3€] 0.2128 0.5106 0.4255 | 0.1418 0.8511 1.3050 | 0.1646 0.5699 0.7848 |0.0709 0.2600 0.3148 | 51.16
bnn_emb [38]  0.4255 0.5106 0.6383 | 0.2837 0.8511 1.9574 |0.3292 0.5923 1.1358 | 0.1418 0.2813 0.4389 | 51.82
rrn |44] 0.0000 0.8511 0.8511 | 0.0000 1.4184 2.8369 | 0.0000 0.8163 1.4606 | 0.0000 0.3191 0.6265 | 52.22
tbnn 0.8511 1.5319 1.4043 | 0.5319 2.4610 4.4965 | 0.7548 1.7381 2.6829 | 0.3369 0.8215 1.1674 | 63.46
tbnn_emb 0.8511 1.1064 1.0638 | 0.5674 1.7518 1.3262|0.9474 1.4848 2.2007 | 0.4965 0.8138 1.0099 | 66.87

tbnn_dt2v_emb 1.9149 1.1915 1.4468|1.2411 1.9504 4.5532|1.8667 1.8703 3.0303 |{0.9043 1.1099 1.4293| 66.56

bnn [3€] 3.0693 2.8515 2.6931 | 1.2164 2.8846 5.1174 |3.1365 3.2893 4.2340 |1.0104 1.5706 2.1633 | 56.18
bnn_emb E] 7.3267 4.7129 3.3861 |3.5441 5.1580 6.1885(6.4753 5.8418 6.2665 |2.3424 3.0822 3.3837| 62.65
rrn [44] 0.0000 0.1980 0.0990 | 0.0000 0.0619 0.0619 | 0.0000 0.1679 0.1090 | 0.0000 0.0206 0.0206 | 52.26
tbnn 3.8614 2.8515 2.3564 | 1.8801 3.1525 4.5754|4.3319 3.9721 4.5031 |1.8025 2.3978 2.8768 | 56.65
tbnn_emb 4.9505 3.5248 3.1287 |1.9434 3.0770 4.3718 | 5.0849 4.4715 4.9844 |1.6957 2.1431 2.5949 | 62.20

tbnn_dt2v_emb 5.7426 4.5941 3.8020| 2.1874 3.8474 4.7855 | 5.6081 5.3287 5.6670 | 1.7131 2.4258 2.7858 | 64.89

Gihub: 2008 — 2022
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dblp imdb uspt
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Gender Bias




#teams

45

I ] 1
| =k - |- 208 2500 : - ::E ert/team
600 : #expert/team 488 i #expert/team : P
: —— equal auc , equal auc ! = equal auc
500 : : 2000 i
I 360 : !
I i
400 : e ' v 1500 :
' ; : 3 s
360 i Y 200 : @ .
: w* ! 1 1e00 i
200 : | |
[ 18e 1 i
100 : \:\ - & E
[ I i
T —— 1 1
2 : of ! 0 B —
a 5008 12088 a 5688 l1eea 1508 2008 ' ' ¥ i ' ' !
. . @ 2080 4900 6ORO Zepe 10686 12608
expert-idx expert-idx

expert-idx

dblp imdb uspt
%popular experts (avg) 31.30%  42.60%  31.40%

Popularity Bias
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Adila ’: Fairness-Aware Team Formation

feminine Arabic given name, meaning just and fair A= *

Required Skils | Expert redictior

Variational Bayesian
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. c 7 3
2 8 B ¥ . B 3
8 L A 6 > . S
A = - B @ 1 £
3 O c 0 3] =
0, 0, o Q + B 4 Qo
0] 2 O 2 5 H "I
0 [\ 8 N\ 6 4 Utility 1/5 2/5 3/5 3/5
O o 7 g Fairness 0/5 4/5 2/5 2/5
n Non-popular
7

Post-processing Fair Reranking
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OpeNTF : An Open-Source Neural Team Formation 991 9@
Benchmark Library 2Ed0OP

Team formation involves selecting a team of skillful experts who will, more likely than not, accomplish a task. Deployments 27
Researchers have proposed a rich body of computational methods to automate the traditionally tedious and error-
prone manual process. We previously released OpeNTF, an open-source framework hosting canonical neural
models as the cutting-edge class of approaches, along with large-scale training datasets from varying domains. In + 26 deployments
this paper, we contribute OpeNTF2 that extends the initial release in two prime directions. (1) The first of its kind in

@ github-pages last month
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